如图,将连续的奇数1,3,5,7……排成如下的数表,用十字形框框出5个数.
探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为 ,这说明被十字框框中的五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是 ;
探究规律二:落在十字框中间且位于第二列的一组奇数是21,39,57,75,…,则这一组数可以用整式表示为18m+3(m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为 ;(用含m的式子表示)
运用规律:
(1)已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是 ,这个奇数落在从左往右第 列;
(2)被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:若不能,请说明理由.
探究规律一:设十字框中间的奇数为x,则框中五个奇数的和用含x的整式表示为 ,这说明被十字框框中的五个奇数的和一定是正整数n(n>1)的倍数,这个正整数n是 ;
探究规律二:落在十字框中间且位于第二列的一组奇数是21,39,57,75,…,则这一组数可以用整式表示为18m+3(m为序数),同样,落在十字框中间且位于第三列的一组奇数可以表示为 ;(用含m的式子表示)
运用规律:
(1)已知被十字框框中的五个奇数的和为2025,则十字框中间的奇数是 ,这个奇数落在从左往右第 列;
(2)被十字框框中的五个奇数的和可能是2020吗?若能,请求出这五个数:若不能,请说明理由.

若有理数a,b满足条件:
(m是整数),则称有理数a,b为一对“共享数”,其中整数m是a,b的“共享因子”.
(1)下列两对数中:①3和5,②6和8,是一对“共享数”的是 ;(填序号)
(2)若7和x是一对“共享数”,且“共享因子”为2,求x的值;
(3)探究:当有理数a,b满足什么条件时,a,b是一对“共享数”.

(1)下列两对数中:①3和5,②6和8,是一对“共享数”的是 ;(填序号)
(2)若7和x是一对“共享数”,且“共享因子”为2,求x的值;
(3)探究:当有理数a,b满足什么条件时,a,b是一对“共享数”.