- 数与式
- 有理数加减乘除混合运算
- + 有理数加减乘除混合运算的实际应用
- 程序流程图与有理数计算
- 算“24”点
- 含乘方的有理数混合运算
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
若规定[a]表示不超过a的最大整数,例如[4.3]=4,若m =[
],n=[-2.1],则在此规定下[m+
n]的值为( )


A.-3 | B.-2 | C.-1 | D.0 |
小明练习跳绳.以1分钟跳165个为目标,并把20次1分钟跳绳的数量记录如下表(超过165个的部分记为“
”,少于165个的部分记为“
”)
(1)小明在这20次跳绳练习中,1分钟最多跳多少个?
(2)小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多几个?
(3)小明在这20次跳绳练习中,累计跳绳多少个?


与目标数量的差依(单位:个) | ![]() | ![]() | ![]() | ![]() | ![]() |
次数 | 4 | 5 | 3 | 6 | 2 |
(1)小明在这20次跳绳练习中,1分钟最多跳多少个?
(2)小明在这20次跳绳练习中,1分钟跳绳个数最多的一次比最少的一次多几个?
(3)小明在这20次跳绳练习中,累计跳绳多少个?
出租车司机王师傅某天上午的营运全是在经十路上进行的,如果规定向东为正,向西为负,他这天上午所接十位乘客的行车里程(单位:千米)如下:
+5、-2、+5、-1、+10、-3、-2、+12、+4、-5.
(1)王师傅这天上午的出发地记为0,他将最后一名乘客送抵目的地时,距上午的出发地有多远?
(2)若出租车消耗天然气量为0.1立方米/千米,这天上午王师傅共耗天然气多少立方米?
(3)若出租车起步价为9元,起步里程为3千米(包括3千米),超过部分(不足1千米按1千米计算)每千米1.5元,这天上午王师傅共得车费多少元?
+5、-2、+5、-1、+10、-3、-2、+12、+4、-5.
(1)王师傅这天上午的出发地记为0,他将最后一名乘客送抵目的地时,距上午的出发地有多远?
(2)若出租车消耗天然气量为0.1立方米/千米,这天上午王师傅共耗天然气多少立方米?
(3)若出租车起步价为9元,起步里程为3千米(包括3千米),超过部分(不足1千米按1千米计算)每千米1.5元,这天上午王师傅共得车费多少元?
式子“1+2+…+100”表示从1开始的100个连续自然数的和,为了简便将其表示为
,这里“∑”是求和符号,如
,通过以上材料,计算
=_______.



有20筐白菜,以每筐25千克为标准,超过或不足的千克数分别用正、负数来表示,记录如下:
(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?
(2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若这20筐白菜的进货价为每千克x元,售价为每千克y元(x<y),则出售这批白菜可获利润多少元?(用含x、y的代数式表示)(注:第(1)、(2)小题列出算式,并计算)
与标准质量的差值(单位:千克) | -3 | -2 | -1.5 | 0 | 1 | 2.5 |
筐数 | 1 | 4 | 2 | 3 | 2 | 8 |
(1)20筐白菜中,最重的一筐比最轻的一筐重多少千克?
(2)与标准重量比较,20筐白菜总计超过或不足多少千克?
(3)若这20筐白菜的进货价为每千克x元,售价为每千克y元(x<y),则出售这批白菜可获利润多少元?(用含x、y的代数式表示)(注:第(1)、(2)小题列出算式,并计算)
某食品厂从生产的食品罐头中抽出20听检测质量,将超过标准质量用正数表示,不足标准质量的用负数表示,结果记录如下表:
问这批样品平均每听的质量比标准质量是多还是少?相差多少克?
偏差/克 | -10 | -5 | 0 | +5 | +10 | +15 |
听数 | 1 | 2 | 7 | 5 | 4 | 1 |
问这批样品平均每听的质量比标准质量是多还是少?相差多少克?
登山队员攀登珠穆朗玛峰,在海拔3000m时,气温为﹣20℃,已知每登高1000m,气温降低6℃,当海拔为5000m时,气温是_____℃.
出租车司机李师傅某天下午从停车场出发一直沿东西方向的大街进行营运,规定向东为正,向西为负,他行驶里程(单位:km)记录如下:+11,-5,+3,+10,-11,+5,-15,-8.
(1)当把最后一名乘客送达目的地时,李师傅在停车场的什么位置?
(2)若每千米的营运额为7元,成本为1.5元/km,则这天下午他盈利多少元?
(1)当把最后一名乘客送达目的地时,李师傅在停车场的什么位置?
(2)若每千米的营运额为7元,成本为1.5元/km,则这天下午他盈利多少元?