- 数与式
- 正数和负数
- 有理数的初步认识
- + 数轴
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
数轴上有A,B,C不同三点,点A到原点的距离是2,点B到原点的距离是3,那么A,B两点之间的距离是( )
A.1 | B.5 | C.1或5 | D.以上都错 |
如图所示,圆的周长为4个单位长度,在圆的4等分点处标上字母A,B,C,D,先将圆周上的字母A对应的点与数轴的数字1所对应的点重合,若将圆沿着数轴向左滚动.那么数轴上的﹣2010所对应的点将与圆周上字母所对应的点( )重合


A.点C | B.点D | C.点A | D.点B |
(1)在数轴上画出下列各数的点,并把它们用“<”连接起来。
-1
, |-2|,0,-0.5

(2)根据(1)中的数轴,分别写出大于-1
的最小整数和小于|-2|的最大整数
-1


(2)根据(1)中的数轴,分别写出大于-1

阅读下列材料:我们知道|a|的几何意义是在数轴上数a对应的点与原点的距离,即|a|=|a﹣0|,也就是说,|a|表示在数轴上数a与数0对应点之间的距离.这个结论可以推广为:|a﹣b|表示在数轴上数a与b对应点之间的距离.
例1 已知|a|=2,求a的值.
解:在数轴上与原点距离为2的点的对应数为﹣2和2,即a的值为2和﹣2.
例2 已知|a﹣1|=2,求a的值.
解:在数轴上与1的距离为2点的对应数为3和﹣1,即a的值为3和﹣1.
仿照阅读材料的解法,解决下列问题:
(1)已知|a|=
,求a的值;
(2)已知|a+2|=4,求a的值;
(3)若数轴上表示a的点在﹣4与2之间,则|a+4|+|a﹣2|的值为 ;
(4)当a满足 时,则|a+4|+|a﹣2|的值最小,最小值是 .
例1 已知|a|=2,求a的值.
解:在数轴上与原点距离为2的点的对应数为﹣2和2,即a的值为2和﹣2.
例2 已知|a﹣1|=2,求a的值.
解:在数轴上与1的距离为2点的对应数为3和﹣1,即a的值为3和﹣1.
仿照阅读材料的解法,解决下列问题:
(1)已知|a|=

(2)已知|a+2|=4,求a的值;
(3)若数轴上表示a的点在﹣4与2之间,则|a+4|+|a﹣2|的值为 ;
(4)当a满足 时,则|a+4|+|a﹣2|的值最小,最小值是 .