- 数与式
- 正数和负数
- 有理数的初步认识
- + 数轴
- 数轴的三要素及其画法
- 用数轴上的点表示有理数
- 利用数轴比较有理数的大小
- 数轴上两点之间的距离
- 数轴上的动点问题
- 根据点在数轴的位置判断式子的正负
- 相反数
- 绝对值
- 有理数大小比较
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知数轴上两点A、B所表示的数分别为a和b,且满足|a+3|+(b-9)2=0,O为原点;

(1) a= ,b= .
(2) 若点C从O点出发向右运动,经过3秒后点C到A点的距离等于点C到B点距离,求点C的运动速度?(结合数轴,进行分析.)
(3) 若点D以2个单位每秒的速度从点O向右运动,同时点P从点A出发以3个单位每秒的速度向左运动,点Q从点B出发,以6个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问
的值是否发生变化,请说明理由.(注:PD指的是点P与D之间的线段,而算式PQ-OD指线段PQ与OD长度的差.类似的,其它的两个大写字母写在一起时意义一样 .

(1) a= ,b= .
(2) 若点C从O点出发向右运动,经过3秒后点C到A点的距离等于点C到B点距离,求点C的运动速度?(结合数轴,进行分析.)
(3) 若点D以2个单位每秒的速度从点O向右运动,同时点P从点A出发以3个单位每秒的速度向左运动,点Q从点B出发,以6个单位每秒的速度向右运动.在运动过程中,M、N分别为PD、OQ的中点,问

下列说法中错误的有( )
(1)任何数都有倒数;
(2)m+|m|的结果必为非负数;
(3)﹣a一定是一个负数;
(4)绝对值相等的两个数互为相反数;
(5)在原点左边离原点越远的数越小.
(1)任何数都有倒数;
(2)m+|m|的结果必为非负数;
(3)﹣a一定是一个负数;
(4)绝对值相等的两个数互为相反数;
(5)在原点左边离原点越远的数越小.
A.2个 | B.3个 | C.4个 | D.5个 |
如图1,在一条可以折叠的数轴上,点A,B分别表示数-9和4.
(1)A,B两点之间的距离为________.
(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.
(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?
(1)A,B两点之间的距离为________.
(2)如图2,如果以点C为折点,将这条数轴向右对折,此时点A落在点B的右边1个单位长度处,则点C表示的数是________.
(3)如图1,若点A以每秒3个单位长度的速度沿数轴向右运动,点B以每秒2个单位长度的速度也沿数轴向右运动,那么经过多少时间,A、B两点相距4个单位长度?

如图,数轴上的点A,O,B,C,D分别表示-3,0,2.5,5,-6.

(1)求B,O两点间的距离;
(2)求A,D两点间的距离;
(3)求C,B两点间的距离;
(4)请观察思考,若点A表示数m,且m<0,点B表示数n,且n>0,用含m,n的代数式表示A,B两点间的距离.

(1)求B,O两点间的距离;
(2)求A,D两点间的距离;
(3)求C,B两点间的距离;
(4)请观察思考,若点A表示数m,且m<0,点B表示数n,且n>0,用含m,n的代数式表示A,B两点间的距离.
一支水笔正好与一把直尺平靠放在一起(如图),小明发现:水笔的笔尖端(A点)正好对着直尺刻度约为5.6cm处,另一端(B点)正好对着直尺刻度约为20.6cm.则水笔的中点位置的刻度约为_____.
