- 数与式
- + 有理数
- 正数和负数
- 有理数的初步认识
- 数轴
- 相反数
- 绝对值
- 有理数大小比较
- 有理数的运算
- 实数
- 代数式
- 因式分解
- 分式
- 二次根式
- 方程与不等式
- 函数
- 图形的性质
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
把方程 4x- x = 4的解用数轴上的点表示出来,那么该点在图中的( )


A.点M,点N 之间 | B.点N,点O 之间 |
C.点O,点P 之间 | D.点P,点Q 之间 |
如图在以点O为原点的数轴上,点A表示的数是3,点B在原点的左侧,且AB=6AO(我们把数轴上两点之间的距离用表示两点的大写字母一起标记,比如,点A与点B之间的距离记作AB).
(1)B点表示的数是_______.
(2)若动点P从O点出发,以每秒2个单位长度的速度匀速向左运动,问经过几秒钟后PA=3PB?并求出此时P点在数轴上对应的数.
(3)若动点M.P.N分别同时从A、O、B出发,匀速向右运动,其速度分别为1个单位长度/秒.2个单位长度/秒.4个单位长度/秒,设运动时间为t秒,请直接写出PM.PN.MN中任意两个相等时的时间.
(1)B点表示的数是_______.
(2)若动点P从O点出发,以每秒2个单位长度的速度匀速向左运动,问经过几秒钟后PA=3PB?并求出此时P点在数轴上对应的数.
(3)若动点M.P.N分别同时从A、O、B出发,匀速向右运动,其速度分别为1个单位长度/秒.2个单位长度/秒.4个单位长度/秒,设运动时间为t秒,请直接写出PM.PN.MN中任意两个相等时的时间.

已知a是最大的负整数,b、c满足
,且a,b,c分别是点A,B,C在数轴上对应的数.
(1)求a,b,c的值,并在数轴上标出点A,B,C;

(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?
(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)

(1)求a,b,c的值,并在数轴上标出点A,B,C;

(2)若动点P从C出发沿数轴正方向运动,点P的速度是每秒2个单位长度,运动几秒后,点P到达B点?
(3)在数轴上找一点M,使点M到A,B,C三点的距离之和等于13,请直接写出所有点M对应的数.(不必说明理由)
如图,数轴上点A,B表示到﹣2的距离都为6,P为线段AB上任一点,C,D两点分别从P,B同时向A点移动,且C点运动速度为每秒2个单位长度,D点运动速度为每秒3个单位长度,运动时间为t秒.

(1)A点表示数为 ,B点表示数为 ,AB= .
(2)若P点表示的数是0,
①运动1秒后,求CD的长度;
②当D在BP上运动时,求线段AC,CD之间的数量关系式.

(1)A点表示数为 ,B点表示数为 ,AB= .
(2)若P点表示的数是0,
①运动1秒后,求CD的长度;
②当D在BP上运动时,求线段AC,CD之间的数量关系式.
已知多项式(a2﹣16)x2+(a+4)x+4a是关于x的一次多项式,且常数项为b,a、b分别对应着数轴上的A、B两点.

(1)a= ,b= ;
(2)若点P从点A出发,以每秒3个单位长度的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的3倍;
(3)数轴上还有一点C表示的数为40,若点P和点Q同时从点A和点B出发,分别以每秒4个单位长度和每秒2个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A,求运动多少秒时,P、Q两点之间的距离为6.

(1)a= ,b= ;
(2)若点P从点A出发,以每秒3个单位长度的速度向x轴正半轴运动,求运动时间为多少时,点P到点A的距离是点P到点B的距离的3倍;
(3)数轴上还有一点C表示的数为40,若点P和点Q同时从点A和点B出发,分别以每秒4个单位长度和每秒2个单位长度的速度向C点运动,P点到达C点后,再立刻以同样的速度返回,运动到终点A,求运动多少秒时,P、Q两点之间的距离为6.
已知A、B在数轴上对应的数分别用+2、﹣6表示,P是数轴上的一个动点.

(1)数轴上A、B两点的距离为 .
(2)当P点满足PB=2PA时,求P点表示的数.
(3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.
①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则ko的值是多少?
②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是 (请直接写答案).

(1)数轴上A、B两点的距离为 .
(2)当P点满足PB=2PA时,求P点表示的数.
(3)将一枚棋子放在数轴上k0点,第一步从k点向右跳2个单位到k1,第二步从k1点向左跳4个单位到k2,第三步从k2点向右跳6个单位到k3,第四步从k3点向左跳8个单位到k4.
①如此跳6步,棋子落在数轴的k6点,若k6表示的数是12,则ko的值是多少?
②若如此跳了1002步,棋子落在数轴上的点k1002,如果k1002所表示的数是1998,那么k0所表示的数是 (请直接写答案).
阅读下列材料:
我们给出如下定义:数轴上给定两点
,
以及一条线段
,若线段
的中点
在线段
上(点
可以与点
或
重合),则称点
与点
关于线段
径向对称.下图为点
与点
关于线段
径向对称的示意图.

解答下列问题:
如图1,在数轴上,点
为原点,点
表示的数为-1,点
表示的数为2.

(1)①点
,
,
分别表示的数为-3,
,3,在
,
,
三点中, 与点
关于线段
径向对称;
②点
表示的数为
,若点
与点
关于线段
径向对称,则
的取值范围是 ;
(2)在数轴上,点
,
,
表示的数分别是-5,-4,-3,当点
以每秒1个单位长度的速度向正半轴方向移动时,线段
同时以每秒3个单位长度的速度向正半轴方向移动.设移动的时间为
(
)秒,问
为何值时,线段
上至少存在一点与点
关于线段
径向对称.
我们给出如下定义:数轴上给定两点
















解答下列问题:
如图1,在数轴上,点




(1)①点









②点






(2)在数轴上,点











在多项式
中,
表示这个多项式的项数,
表示这个多项式中三次项的系数.在数轴上点
与点
所表示的数恰好可以用
与
分别表示.有一个动点
从点
出发,以每秒2个单位长度的速度沿数轴向左匀速运动,设运动时间为
秒.
(1)
________,
___________,线段
_________个单位长度;
(2)点
所表示数是________(用含
的多项式表示);
(3)求当
为多少时,线段
的长度恰好是线段
长度的三倍?










(1)



(2)点


(3)求当



出租车司机小李某天下午的营运始终在和谐街(自东向西或自西向东)上进行,如果规定向东为正,向西为负,他这天下午从幸福门出发,行车记录仪把当天下午行车情况记录如
下表:
(1)求E点在幸福门的哪个方向?距离幸福门的路程有多少千米?
(2)若汽车每行驶1千米耗油0.08升,汽车出发时装满油,油箱的容积为50升,若汽车行驶的路程为x千米,请将汽车剩余的油量用含x的代数式表示出来.
(3)汽车在中途需要加油吗?如需加油,应加多少升油?

到达地点 | 起点 | A | B | C | D | E |
前进方向 | | 西 | 东 | 西 | 东 | 西 |
所行路程(千米) | 0 | 15 | 20 | 5 | 18 | 10 |
(1)求E点在幸福门的哪个方向?距离幸福门的路程有多少千米?
(2)若汽车每行驶1千米耗油0.08升,汽车出发时装满油,油箱的容积为50升,若汽车行驶的路程为x千米,请将汽车剩余的油量用含x的代数式表示出来.
(3)汽车在中途需要加油吗?如需加油,应加多少升油?