- 力学
- 电磁学
- 电荷间的相互作用
- 电场力的性质
- 电场能的性质
- 静电现象
- 电容器
- + 带电粒子在电场中的运动
- 带电粒子(微粒)在匀强电场中的直线运动
- 带电粒子在非匀强电场中的运动
- 带电微粒(计重力)在电场中的运动
- 带电粒子在匀强电场中的偏转
- 示波管及其应用
- 热学
- 光学
- 近代物理
- 其他
- 初中衔接知识点
- 竞赛
根据
粒子散射实验,卢瑟福提出了原子的核式结构模型,图中虚线表示原子核所形成的电场的等势线,实线表示一个
粒子的运动轨迹.在
粒子从a运动到b、再运动到c的过程中,下列说法正确的是( )





A.动能先增大,后减小 |
B.电势能先减小,后增大 |
C.电场力先做负功,后做正功,总功等于零 |
D.加速度先变小,后变大 |
图是电子射线管的示意图.接通电源后,电子射线由阴极沿x轴方向射出,在荧光屏上会看到一条亮线.要使荧光屏上的亮线向下(z轴方向)偏转,在下列措施中可采用的是 (填选项代号).


A.加一磁场,磁场方向沿z轴负方向 |
B.加一磁场,磁场方向沿y轴正方向 |
C.加一电场,电场方向沿z轴负方向 |
D.加一电场,电场方向沿y轴正方向 |
一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方
处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移
,则从P点开始下落的相同粒子将()


A.打到下极板上 | B.在下极板处返回 |
C.在距上极板![]() | D.在距上极板![]() |
如图是某电场中的一条电场线,P、Q是这条电场线上的两点,将带正电的点电荷从P点静止释放,点电荷仅在电场力作用下沿电场线从P向Q加速运动,且加速度变小,则下列判断正确的是( )


A.P点场强大于Q点场强 |
B.P点电势高于Q点电势 |
C.该电场可能是匀强电场 |
D.带负电粒子在P点的电势能大于在Q点的电势能 |
图中的实线表示电场线,虚线表示只受电场力作用的带电粒子的运动轨迹,粒子由M点向N点运动,可以判定( )


A.粒子带负电,运动过程电势能减小 |
B.粒子带负电,运动过程电势能增大 |
C.粒子带正电,运动过程电势能减小 |
D.粒子带正电,运动过程电势能增大 |
图为静电除尘器除尘机理的示意图。尘埃在电场中通过某种机制带电,在电场力的作用下向集尘极迁移并沉积,以达到除尘目的。下列表述正确的是


A.到达集尘极的尘埃带正电荷 |
B.电场方向由集尘极指向放电极 |
C.带电尘埃所受电场力的方向与电场方向相同 |
D.同一位置带电荷量越多的尘埃所受电场力越大 |
原来静止的氕核(
)、氘核(
)、氚核(
)混合物经同一电场加速后(不考虑电荷之间的静电力作用),它们具有相同的( )



A.速度 | B.动能 | C.动量 | D.以上都不对 |
如图,在第一象限存在匀强磁场,磁感应强度方向垂直于纸面(xy平面)向外;在第四象限存在匀强电场,方向沿x轴负向.在y轴正半轴上某点以与x轴正向平行、大小为v0的速度发射出一带正电荷的粒子,该粒子在(d,0)点沿垂直于x轴的方向进人电场.不计重力.若该粒子离开电场时速度方向与y轴负方向的夹角为θ,求:

(1)电场强度大小与磁感应强度大小的比值;
(2)该粒子在电场中运动的时间.

(1)电场强度大小与磁感应强度大小的比值;
(2)该粒子在电场中运动的时间.
如图所示的平行金属板中,电场强度E和磁感应强度B相互垂直,三个带电粒子(不计重力)从平行板中央射人,沿直线从右侧小孔中飞出,然后进入另一竖直向下的匀强电场中,分别到达同一水平线上的a、b、c三点。则下列判断正确的是( )


A.三个粒子在平行金属板中运动的速度大小相同 |
B.三个粒子的质量相同 |
C.到达a点的粒子动能最小 |
D.到达c点的粒子飞行的时间最长 |
如图甲,倾角为θ的光滑绝缘斜面,底端固定一带电量为Q的正点电荷.将一带正电小物块(可视为质点)从斜面上A点由静止释放,小物块沿斜面向上滑动至最高点B处,此过程中小物块的动能和重力势能随位移的变化图象如图乙(E1和x1为已知量).已知重力加速度为g,静电力常量为k,由图象可求出( )


A.小物块的带电量 |
B.A、B间的电势差 |
C.小物块的质量 |
D.小物块速度最大时到斜面底端的距离 |