1.单选题- (共8题)
8.
秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为


A.35 | B.20 | C.18 | D.9 |
2.填空题- (共6题)
12.
如图所示,有一个水平放置的透明无盖的正方体容器,容器高8 cm,将一个球(球的直径大于8 cm)放在容器口,再向容器内注水,当球面恰好接触水面时测得水深为6 cm,如果不计容器的厚度,则球的体积为________ cm3.
13.
在直角坐标系
中,直线
的参数方程为
(
为参数).以原点为极点,
轴正半轴为极轴建立极坐标系,
的极坐标方程为
.
为直线
上一动点,当
到圆心
的距离最小时,则
的直角坐标为__________________.












3.解答题- (共6题)
17.
已知数列
中,
,且
,其前
项和为
,且
为等比数列.
(Ⅰ)求数列
的通项公式;
(Ⅱ)若
,记数列
的前
项和为
.设
是整数,问是否存在正整数
,使等式
成立?若存在,求出
和相应的
值;若不存在,请说明理由.






(Ⅰ)求数列

(Ⅱ)若









20.
为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的 500 名志愿者中随机抽取 100 名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是[20,25),[25,30),[30,35),[35,40),[40,45].

(1)求图中x的值并根据频率分布直方图估计这 500 名志愿者中年龄在[35,40)岁的人数;
(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 20 名参加中心广场的宣传活动,再从这 20 名中采用简单随机抽样方法选取 3 名志愿者担任主要负责人.记这 3 名志愿者中“年龄低于 35 岁”的人数为X,求X 的分布列及均值.

(1)求图中x的值并根据频率分布直方图估计这 500 名志愿者中年龄在[35,40)岁的人数;
(2)在抽出的 100 名志愿者中按年龄采用分层抽样的方法抽取 20 名参加中心广场的宣传活动,再从这 20 名中采用简单随机抽样方法选取 3 名志愿者担任主要负责人.记这 3 名志愿者中“年龄低于 35 岁”的人数为X,求X 的分布列及均值.
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(6道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20