1.单选题- (共7题)
6.
剪纸艺术是中国最古老的民间艺术之一,作为一种镂空艺术,它能给人以视觉上的艺术享受.在如图所示的圆形图案中有12个树叶状图形(即图中阴影部分),构成树叶状图形的圆弧均相同.若在圆内随机取一点,则此点取自阴影部分的概率是( )


A.![]() | B.![]() | C.![]() | D.![]() |
2.选择题- (共1题)
3.填空题- (共6题)
14.
交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为___
4.解答题- (共6题)
17.
等差数列{an}的前n项和为Sn,a2+a15=17,S10=55.数列{bn}满足an=log2bn.
(1)求数列{bn}的通项公式;
(2)若数列{an+bn}的前n项和Tn满足Tn=S32+18,求n的值.
(1)求数列{bn}的通项公式;
(2)若数列{an+bn}的前n项和Tn满足Tn=S32+18,求n的值.
18.
如图,在四棱锥P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,PA=2,AB=1.设M,N分别为PD,AD的中点.

(1)求证:平面CMN∥平面PAB;
(2)求三棱锥P-ABM的体积.

(1)求证:平面CMN∥平面PAB;
(2)求三棱锥P-ABM的体积.
19.
已知椭圆
的离心率为
,点
在椭圆D上.
(1)求椭圆D的标准方程;
(2)过y轴上一点E(0,t)且斜率为k的直线l与椭圆交于A,B两点,设直线OA,OB(O为坐标原点)的斜率分别为kOA,kOB,若对任意实数k,存在λ∈[2,4],使得kOA+kOB=λk,求实数t的取值范围.



(1)求椭圆D的标准方程;
(2)过y轴上一点E(0,t)且斜率为k的直线l与椭圆交于A,B两点,设直线OA,OB(O为坐标原点)的斜率分别为kOA,kOB,若对任意实数k,存在λ∈[2,4],使得kOA+kOB=λk,求实数t的取值范围.
20.
已知某企业有职工5000人,其中男职工3500人,女职工1500人.该企业为了丰富职工的业余生活,决定新建职工活动中心,为此,该企业工会采用分层抽样的方法,随机抽取了300名职工每周的平均运动时间(单位:h),汇总得到频率分布表(如表所示),并据此来估计该企业职工每周的运动时间:
(1)求抽取的女职工的人数;
(2)①根据频率分布表,求出m、n、p的值,完成如图所示的频率分布直方图,并估计该企业职工每周的平均运动时间不低于4h的概率;
②若在样本数据中,有60名女职工每周的平均运动时间不低于4h,请完成以下2×2列联表,并判断是否有95%以上的把握认为“该企业职工毎周的平均运动时间不低于4h与性别有关”.
附:K2=
,其中n=a+b+c+d.

平均运动时间 | 频数 | 频率 |
[0,2) | 15 | 0.05 |
[2,4) | m | 0.2 |
[4,6) | 45 | 0.15 |
[6,8) | 755 | 0.25 |
[8,10) | 90 | 0.3 |
[10,12) | p | n |
合计 | 300 | 1 |
(1)求抽取的女职工的人数;
(2)①根据频率分布表,求出m、n、p的值,完成如图所示的频率分布直方图,并估计该企业职工每周的平均运动时间不低于4h的概率;
| 男职工 | 女职工 | 总计 |
平均运动时间低于4h | | | |
平均运动时间不低于4h | | | |
总计 | | | |
②若在样本数据中,有60名女职工每周的平均运动时间不低于4h,请完成以下2×2列联表,并判断是否有95%以上的把握认为“该企业职工毎周的平均运动时间不低于4h与性别有关”.
附:K2=

P(K2≥k0) | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 |
k0 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 |

试卷分析
-
【1】题量占比
单选题:(7道)
选择题:(1道)
填空题:(6道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19