上海市奉贤区2019-2020学年高三上学期第一次模拟考试(期末)数学试题

适用年级:高三
试卷号:635541

试卷类型:一模
试卷考试时间:2020/1/20

1.单选题(共3题)

1.
己知点的,曲线的方程,曲线的方程,则“点在曲线上“是”点在曲线上“的(   )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件
2.
个互不相等的正数组成的矩阵中,每行中的三个数成等差数列,且成等比数列,下列判断正确的有(   )
①第列中的必成等比数列;②第列中的不一定成等比数列;③
A.B.C.D.
3.
一个不是常数列的等比数列中,值为的项数最多有(   )
A.B.C.D.无穷多个

2.选择题(共2题)

4.请根据上下文的意思, 用括号内所给单词的恰当形式补全短文。每个空格只准填一个单词。

    My mother is very nice. She is a {#blank#}1{#/blank#} (work) in a clothes store. She usually gets up at 6: 30. Then she cooks breakfast for me. After {#blank#}2{#/blank#}(have) a bowl of porridge and some broccoli, she goes to work at 7: 30. There {#blank#}3{#/blank#} (be)usually many people in her clothes store. So she is very busy.

    My mother's work in the morning is over at 11: 45, and starts again at 1: 30 in the afternoon. So she has to have lunch in the store. Her work in the afternoon {#blank#}4{#/blank#} (end) at 5: 30, and she goes home at 6: 30. Then she has dinner with {#blank#}5{#/blank#} (we)at home. After dinner we watch TV together.

5.请根据上下文的意思, 用括号内所给单词的恰当形式补全短文。每个空格只准填一个单词。

    My mother is very nice. She is a {#blank#}1{#/blank#} (work) in a clothes store. She usually gets up at 6: 30. Then she cooks breakfast for me. After {#blank#}2{#/blank#}(have) a bowl of porridge and some broccoli, she goes to work at 7: 30. There {#blank#}3{#/blank#} (be)usually many people in her clothes store. So she is very busy.

    My mother's work in the morning is over at 11: 45, and starts again at 1: 30 in the afternoon. So she has to have lunch in the store. Her work in the afternoon {#blank#}4{#/blank#} (end) at 5: 30, and she goes home at 6: 30. Then she has dinner with {#blank#}5{#/blank#} (we)at home. After dinner we watch TV together.

3.填空题(共12题)

6.
已知点在函数的图像上,则的反函数_______.
7.
根据相关规定,机动车驾驶人血液中的酒精含量大于(等于)20毫克/100毫升的行为属于饮酒驾车. 假设饮酒后,血液中的酒精含量为毫克/100毫升,经过x个小时,酒精含量降为毫克/100毫升,且满足关系式r为常数). 若某人饮酒后血液中的酒精含量为89毫克/100毫升,2小时后,测得其血液中酒精含量降为61毫克/100毫升,则此人饮酒后需经过________小时方可驾车.(精确到小时)
8.
中,若,则的面积是__________.
9.
己知直线上有两个点,己知满足,若,则这样的点有__________个.
10.
,且,则__________.
11.
计算:__________.
12.
若圆锥底面半径为1,高为2,则圆锥的侧面积为
13.
若双曲线的渐近线方程为,它的焦距为,则该双曲线的标准方程为__________.
14.
设平面直角坐标系中,为原点,为动点,,过点轴于,过轴于点不重合,不重合,设,则点的轨迹方程是__________
15.
在二项式的展开式中,的一次项系数为 .(用数字作答)
16.
甲、乙两人从6门课程中各选修3门,则甲、乙所选的课程中恰有1门相同的选法有_________种.
17.
给出下列一组函数:,…,请你通过研究以上所给的四个函数解析式具有的特征,写出一个类似的函数解析式:__________.

4.解答题(共5题)

18.
某纪念章从某年某月某日起开始上市,通过市场调査,得到该纪念章每枚的市场价(单位:元)与上市时间(单位:天)的数据如下:
上市时间



市场价



 
(1)根据上表数计,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③;④
(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.
19.
函数,其中.
(1)讨论的奇偶性;
(2)时,求证:的最小正周期是
(3),当函数的图像与的图像有交点时,求满足条件的的个数,说明理由.
20.
有限个元素组成的集合为,集合中的元素个数记为,定义,集合的个数记为,当,称集合具有性质.
(1)设集合具有性质,判断集合中的三个元素是否能组成等差数列,请说明理由;
(2) 设正数列的前项和为,满足,其中,数列中的前项:组成的集合记作,将集合中的所有元素从小到大排序,即满足,求
(3) 己知集合,其中数列是等比数列,,且公比是有理数,判断集合是否具有性质,说明理由.
21.
己知长方体中,,点是棱上的动点.

(1)求三棱锥的体积;
(2)当点是棱上的中点时,求直线与平面所成的角(结果用反三角函数值表示).
22.
平面内任意一点到两定点的距离之和为.
(1)若点是第二象限内的一点且满足,求点的坐标;
(2)设平面内有关于原点对称的两定点,判别是否有最大值和最小值,请说明理由?
试卷分析
  • 【1】题量占比

    单选题:(3道)

    选择题:(2道)

    填空题:(12道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:20