1.单选题- (共10题)
7.
如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )种


A.120 | B.260 | C.340 | D.420 |
2.填空题- (共3题)
13.
已知下列命题:
①在线性回归模型中,相关指数
表示解释变量
对于预报变量
的贡献率,
越接近于1,表示回归效果越好;
②两个变量相关性越强,则相关系数的绝对值就越接近于1;
③在回归直线方程
中,当解释变量
每增加一个单位时,预报变量
平均减少0.5个单位;
④对分类变量
与
,它们的随机变量
的观测值
来说,
越小,“
与
有关系”的把握程度越大.其中正确命题的序号是__________.
①在线性回归模型中,相关指数




②两个变量相关性越强,则相关系数的绝对值就越接近于1;
③在回归直线方程



④对分类变量







3.解答题- (共6题)
16.
2017年5月14日,第一届“一带一路”国际高峰论坛在北京举行,为了解不同年龄的人对“一带一路”关注程度,某机构随机抽取了年龄在15-75岁之间的100人进行调查,经统计“青少年”与“中老年”的人数之比为
.
(1)根据已知条件完成上面的
列联表,并判断能否有99%的把握认为关注“一带一路”是否和年龄段有关?
(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.
附:参考公式
,其中
.
临界值表:

| 关注 | 不关注 | 合计 |
青少年 | 15 | | |
中老年 | | | |
合计 | 50 | 50 | 100 |
(1)根据已知条件完成上面的

(2)现从抽取的青少年中采用分层抽样的办法选取9人进行问卷调查.在这9人中再选取3人进行面对面询问,记选取的3人中关注“一带一路”的人数为X,求X的分布列及数学期望.
附:参考公式


临界值表:
![]() | 0.05 | 0.010 | 0.001 |
![]() | 3.841 | 6.635 | 10.828 |
17.
现有5名男生、2名女生站成一排照相,
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
(1)两女生要在两端,有多少种不同的站法?
(2)两名女生不相邻,有多少种不同的站法?
(3)女生甲不在左端,女生乙不在右端,有多少种不同的站法?
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19