1.单选题- (共9题)
9.
从一堆苹果中任取10只,称得它们的质量如下(单位:克)
125 120 122 105 130 114 116 95 120 134,则样本数据落在[114.5,124.5)内的频率为( )
125 120 122 105 130 114 116 95 120 134,则样本数据落在[114.5,124.5)内的频率为( )
A.0.2 | B.0.3 | C.0.4 | D.0.5 |
2.选择题- (共20题)
13.Mrs Hunt is strict and she never{#blank#}1{#/blank#} (allow) her children to watch TV on school nights.
14.Mrs Hunt is strict and she never{#blank#}1{#/blank#} (allow) her children to watch TV on school nights.
3.填空题- (共5题)
4.解答题- (共6题)
35.
(12分)(2011•重庆)设f(x)=2x3+ax2+bx+1的导数为f′(x),若函数y=f′(x)的图象关于直线x=﹣
对称,且f′(1)=0
(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.

(Ⅰ)求实数a,b的值
(Ⅱ)求函数f(x)的极值.
36.
设函数f(x)=sinxcosx﹣
cos(x+π)cosx,(x∈R)
(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象按
=(
,
)平移后得到的函数y=g(x)的图象,求y=g(x)在(0,
]上的最大值.

(1)求f(x)的最小正周期;
(2)若函数y=f(x)的图象按




38.
(12分)(2011•重庆)如图,在四面体ABCD中,平面ABC⊥平面ACD,AB⊥BC,AC=AD=2,BC=CD=1

(Ⅰ)求四面体ABCD的体积;
(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.

(Ⅰ)求四面体ABCD的体积;
(Ⅱ)求二面角C﹣AB﹣D的平面角的正切值.
39.
(12分)(2011•重庆)如图,椭圆的中心为原点0,离心率e=
,一条准线的方程是x=2

(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:
=
+2
,其中M、N是椭圆上的点,直线OM与ON的斜率之积为﹣
,
问:是否存在定点F,使得|PF|与点P到直线l:x=2
的距离之比为定值;若存在,求F的坐标,若不存在,说明理由.



(Ⅰ)求椭圆的标准方程;
(Ⅱ)设动点P满足:




问:是否存在定点F,使得|PF|与点P到直线l:x=2

试卷分析
-
【1】题量占比
单选题:(9道)
选择题:(20道)
填空题:(5道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20