1.单选题- (共10题)
3.
下列说法错误的是( )
A.![]() ![]() ![]() |
B.若命题![]() ![]() |
C.线性相关系数![]() |
D.用频率分布直方图估计平均数,可以用每个小矩形的高乘以底边中点横坐标之和 |
8.
对具有线性相关关系的变量
,测得一组数据如下表:
根据上表,利用最小二乘法得它们的回归直线方程为
,据此模型来预测当
时,
的估计值为( )

![]() | 2 | 4 | 5 | 6 | 8 |
![]() | 20 | 40 | 60 | 70 | 80 |
根据上表,利用最小二乘法得它们的回归直线方程为



A.210 | B.210.5 | C.211.5 | D.212.5 |
10.
已知甲在上班途中要经过两个路口,在第一个路口遇到红灯的概率为0.5,两个路口连续遇到红灯的概率为0.3,则甲在第一个路口遇到红灯的条件下,第二个路口遇到红灯的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
11.
已知函数
,在下列命题中,其中正确命题的序号是_________.
(1)曲线
必存在一条与
轴平行的切线;
(2)函数
有且仅有一个极大值,没有极小值;
(3)若方程
有两个不同的实根,则
的取值范围是
;
(4)对任意的
,不等式
恒成立;
(5)若
,则
,可以使不等式
的解集恰为
;

(1)曲线


(2)函数

(3)若方程



(4)对任意的


(5)若




13.
一厂家向用户提供的一箱产品共10件,其中有1件次品. 用户先对产品进行随机抽检以决定是否接受. 抽检规则如下:至多抽检3次,每次抽检一件产品(抽检后不放回),只要检验到次品就停止继续抽检,并拒收这箱产品;若3次都没有检验到次品,则接受这箱产品,按上述规则,该用户抽检次数的数学期望是___________.
14.
甲、乙、丙三名同学中只有一人考了满分,当他们被问到谁考了满分时,
甲说:丙没有考满分;
乙说:是我考的;
丙说:甲说真话.
事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是_____ .
甲说:丙没有考满分;
乙说:是我考的;
丙说:甲说真话.
事实证明:在这三名同学中,只有一人说的是假话,那么得满分的同学是
3.解答题- (共4题)
17.
现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记
,求随机变量
的分布列与数学期望
.
(Ⅰ)求这4个人中恰有2人去参加甲游戏的概率;
(Ⅱ)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(Ⅲ)用X,Y分别表示这4个人中去参加甲、乙游戏的人数,记



18.
某单位计划在一水库建一座至多安装3台发电机的水电站,过去50年的水文资料显示,水库年入流量
(年入流量:一年内上游来水与库区降水之和,单位:亿立方米)都在40以上,不足80的年份有10年,不低于80且不超过120的年份有35年,超过120的年份有5年,将年入流量在以上三段的频率作为相应段的概率,假设各年的年入流量相互独立.
(1)求未来3年中,设
表示流量超过120的年数,求
的分布列及期望;
(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量
限制,并有如下关系:
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?

(1)求未来3年中,设


(2)水电站希望安装的发电机尽可能运行,但每年发电机最多可运行台数受年入流量

年入流量![]() | ![]() | ![]() | ![]() |
发电机最多可运行台数 | 1 | 2 | 3 |
若某台发电机运行,则该台年利润为5000万元,若某台发电机未运行,则该台年亏损800万元,欲使水电站年总利润的均值达到最大,应安装发电机多少台?
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18