1.单选题- (共10题)
7.
如下图,在正方体
中,点
分别为棱
,
的中点,点
为上底面的中心,过
三点的平面把正方体分为两部分,其中含
的部分为
,不含
的部分为
,连接
和
的任一点
,设
与平面
所成角为
,则
的最大值为( ).



















A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共4题)
3.解答题- (共5题)
17.
如图,在四棱锥
中,
,底面四边形
为直角梯形,


为线段
上一点.

(1)若
,则在线段
上是否存在点
,使得
平面
?若存在,请确定
点的位置;若不存在,请说明理由.
(2)己知
,若异面直线
与
成
角,二面角
的余弦值为
,求
的长.









(1)若






(2)己知







19.
2019年2月13日《烟台市全民阅读促进条例》全文发布,旨在保障全民阅读权利,培养全民阅读习惯,提高全民阅读能力,推动文明城市和文化强市建设.某高校为了解条例发布以来全校学生的阅读情况,随机调查了200名学生每周阅读时间
(单位:小时)并绘制如图所示的频率分布直方图.

(1)求这200名学生每周阅读时间的样本平均数
和样本方差
(同一组中的数据用该组区间的中间值代表);
(2)由直方图可以认为,目前该校学生每周的阅读时间
服从正态分布
,其中
近似为样本平均数
,
近似为样本方差
.
(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若
令
,则
,且
.利用直方图得到的正态分布,求
.
(ii)从该高校的学生中随机抽取20名,记
表示这20名学生中每周阅读时间超过10小时的人数,求
(结果精确到0.0001)以及
的数学期望.
参考数据:
.若
,则
.


(1)求这200名学生每周阅读时间的样本平均数


(2)由直方图可以认为,目前该校学生每周的阅读时间






(i)一般正态分布的概率都可以转化为标准正态分布的概率进行计算:若





(ii)从该高校的学生中随机抽取20名,记



参考数据:



试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19