1.单选题- (共12题)
10.
中国古代十进制的算筹计数法,在数学史上是一个伟大的创造.根据史书的记载和考古材料的发现,古代的算筹实际上是一根根同样长短和粗细的小棍子,一般长为
,径粗
,多用竹子制成,也有用木头、兽骨、象牙、金属等材料制成的,大约二百七十几枚为一束,放在一个布袋里,系在腰部随身携带.需要记数和计算的时候,就把它们取出来,放在桌上、炕上或地上都能摆弄.在算筹计数法中,以纵横两种排列方式来表示数字.如图,是利用算筹表示数1~9的一种方法.例如:3可表示为“
”,26可表示为“
”,现有6根算筹,据此表示方法,若算筹不能剩余,则用这6根算筹能表示的两位数的个数为( )






A.13 | B.14 | C.15 | D.16 |
11.
总体由编号为01,02,…,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列和第10列数字开始从左到右依次选取两个数字,则选出的第4个个体的编号为( )
附:第6行至第9行的随机数表
2748 6198 7164 4148 7086 2888 8519 1620
7477 0111 1630 2404 2979 7991 9683 5125
3211 4919 7306 4916 7677 8733 9974 6732
2635 7900 3370 9160 1620 3882 7757 4950
附:第6行至第9行的随机数表
2748 6198 7164 4148 7086 2888 8519 1620
7477 0111 1630 2404 2979 7991 9683 5125
3211 4919 7306 4916 7677 8733 9974 6732
2635 7900 3370 9160 1620 3882 7757 4950
A.3 | B.19 | C.38 | D.20 |
12.
在2019年高中学生信息技术测试中,经统计,某校高二学生的测试成绩
,若已知
,则从该校高二年级任选一名考生,他的测试成绩大于92分的概率为( )


A.0.86 | B.0.64 | C.0.36 | D.0.14 |
2.填空题- (共4题)
16.
关于二项式
及其展开式,有下列命题:①该二项展开式中非常数项的系数和是-1;②该二项展开式中第六项为
;③该二项展开式中不含有理项;④当
时,
除以100的余数是1.其中,正确命题的序号为______.




3.解答题- (共6题)
18.
根据《山东省全民健身实施计划(2016-2020年)》,到2020年乡镇(街道)普遍建有“两个一”工程,即一个全民健身活动中心或灯光篮球场、一个多功能运动场.某市把甲、乙、丙、丁四个多功能运动场全部免费为市民开放.

(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取
,
,
,
共25场,在
,
,
,
中随机取两数,求这两数和
的分布列和数学期望;
(2)设四个多功能运动场一个月内各场使用次数之和为
,其相应维修费用为
元,根据统计,得到如下表的
与
数据:
(i)用最小二乘法求
与
之间的回归直线方程;
(ii)
叫做运动场月惠值,根据(i)的结论,试估计这四个多功能运动场月惠值最大时
的值.
参考数据和公式:
,
,
,
,
,
.

(1)在一次全民健身活动中,四个多功能运动场的使用场数如图,用分层抽样的方法从甲、乙、丙、丁四场馆的使用场数中依次抽取









(2)设四个多功能运动场一个月内各场使用次数之和为




![]() | 10 | 15 | 20 | 25 | 30 | 35 | 40 |
![]() | 2302 | 2708 | 2996 | 3219 | 3401 | 3555 | 3689 |
![]() | 2.49 | 2.99 | 3.55 | 4.00 | 4.49 | 4.99 | 5.49 |
(i)用最小二乘法求


(ii)


参考数据和公式:






21.
如图,在四棱锥
中,四边形
是矩形,
是等边三角形,平面
平面
,
,
为棱
上一点,
为
的中点,四棱锥
的体积为
.

(1)若
为棱
的中点,
是
的中点,求证:平面
平面
;
(2)是否存在点
,使得平面
与平面
所成的锐二面角的余弦值为
?若存在,确定点
的位置;若不存在,请说明理由.













(1)若






(2)是否存在点





试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22