1.单选题- (共12题)
9.
古希腊数学家阿波罗尼奧斯(约公元前262~公元前190年)的著作《圆锥曲线论》是古代世界光辉的科学成果,他证明过这样一个命题:平面内与两定点距离的比为常数k(k>0,k≠1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆.在平面直角坐标系中,设A(﹣3,0),B(3,0),动点M满足
=2,则动点M的轨迹方程为()

A.(x﹣5)2+y2=16 | B.x2+(y﹣5)2=9 |
C.(x+5)2+y2=16 | D.x2+(y+5)2=9 |
10.
某学校为了解1000名新生的近视情况,将这些学生编号为000,001,002,…,999,从这些新生中用系统抽样的方法抽取100名学生进行检查,若036号学生被抽到,则下面4名学生中被抽到的是()
A.008号学生 | B.200号学生 | C.616号学生 | D.815号学生 |
2.填空题- (共4题)
3.解答题- (共5题)
19.
如图,在△ABC中,∠B=90°,AB=BC=2,P为AB边上一动点,PD∥BC交AC于点D,现将△PDA沿PD翻折至△PDA1,E是A1C的中点.

(1)若P为AB的中点,证明:DE∥平面PBA1.
(2)若平面PDA1⊥平面PDA,且DE⊥平面CBA1,求四棱锥A1﹣PBCD的体积.

(1)若P为AB的中点,证明:DE∥平面PBA1.
(2)若平面PDA1⊥平面PDA,且DE⊥平面CBA1,求四棱锥A1﹣PBCD的体积.
试卷分析
-
【1】题量占比
单选题:(12道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21