1.单选题- (共10题)
9.
“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”用数形结合的方法给出了勾股定理的详细证明.如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方形拼成一个边长为2的大正方形,若直角三角形中较小的锐角
,现在向该正方形区域内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是( )



A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共3题)
13.
甲、乙、丙三人中只有一人做了好事,他们各自都说了一句话,而且其中只有一句真话.甲说:是乙做的.乙说:不是我做的.丙说:不是我做的.则做好事的是__________.(填甲、乙、丙中的一个)
3.解答题- (共5题)
18.
某校为了探索一种新的教学模式,进行了一项课题实验,甲班为实验班,乙班为对比班,甲乙两班的人数均为50人,一年后对两班进行测试,测试成绩的分组区间为
80,90
、
90,100
、
100,110
、
110,120
、
120,130
,由此得到两个班测试成绩的频率分布直方图:

(1)完成下面2×2列联表,你能有97.5
的把握认为“这两个班在这次测试中成绩的差异与实施课题实验有关”吗?并说明理由;
(2)根据所给数据可估计在这次测试中,甲班的平均分是105.8,请你估计乙班的平均分,并计算两班平均分相差几分?
附:











(1)完成下面2×2列联表,你能有97.5

| 成绩小于100分 | 成绩不小于100分 | 合计 |
甲班 | ![]() | ![]() | 50 |
乙班 | ![]() | ![]() | 50 |
合计 | ![]() | ![]() | 100 |
(2)根据所给数据可估计在这次测试中,甲班的平均分是105.8,请你估计乙班的平均分,并计算两班平均分相差几分?
附:
,其中
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5. 024 | 6.635 | 7.879 | 10.828 |
试卷分析
-
【1】题量占比
单选题:(10道)
填空题:(3道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18