1.单选题- (共12题)
6.
奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )


A.对立事件 | B.不可能事件 |
C.互斥但不对立事件 | D.不是互斥事件 |
9.
《史记》卷六十五《孙子吴起列传第五》中有这样一道题:齐王与田忌赛马,田忌的上等马优于齐王的中等马,劣于齐王的上等马,田忌的中等马优于齐王的下等马,劣于齐王的中等马,田忌的下等马劣于齐王的下等马,现从双方的马匹中随机选一匹马进行一场比赛、齐王获胜的概率是( )
A.![]() | B.![]() | C.![]() | D.![]() |
10.
空气质量指数
是反映空气质量状况的指数,
指数值越小,表明空气质量越好,其对应关系如表:
如图是某市10月1日-20日
指数变化趋势:

下列叙述错误的是( )


![]() | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | ![]() |
空气质量 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
如图是某市10月1日-20日


下列叙述错误的是( )
A.这20天中![]() |
B.这20天中的中度污染及以上的天数占![]() |
C.该市10月的前半个月的空气质量越来越好 |
D.总体来说,该市10月上旬的空气质量比中旬的空气质量好 |
11.
为了测算如图阴影部分的面积,作一个边长为6的正方形将其包含在内,并向正方形内随机投掷800个点,已知恰有200个点落在阴影部分内,据此,可估计阴影部分的面积是( )


A.12 | B.9 | C.8 | D.6 |
2.选择题- (共2题)
3.填空题- (共4题)
4.解答题- (共6题)
22.
某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为
)进行统计,按照
,
,
,
,
的分组作出频率分布直方图,已知得分在
,
的频数分别为8,2.

(1)求样本容量
和频率分布直方图中的
的值;
(2)估计本次竞赛学生成绩的中位数;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在
内的概率.









(1)求样本容量


(2)估计本次竞赛学生成绩的中位数;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在

23.
某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费
(单位:千元)对年销售量
(单位:
)和年利润
(单位:千元)的影响,对近8年的年宣传费
和年销售量
数据作了初步处理,得到下面的散点图及一些统计量的值.

表中
,
(1)根据散点图判断,
与
哪一个适宜作为年销售量
关于年宣传费
的回归方程类型?(给出判断即可,不必说明理由)
(2)根据(1)的判断结果及表中数据,建立
关于
的回归方程;
(3)以知这种产品的年利率
与
、
的关系为
.根据(2)的结果求年宣传费
时,年销售量及年利润的预报值是多少?
附:对于一组数据
,
……
,其回归线
的斜率和截距的最小二乘估计分别为:
,







![]() | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
46.6 | 563 | 6.8 | 298.8 | 1.6 | 1469 | 108.8 |
表中


(1)根据散点图判断,




(2)根据(1)的判断结果及表中数据,建立


(3)以知这种产品的年利率





附:对于一组数据






试卷分析
-
【1】题量占比
单选题:(12道)
选择题:(2道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:22