1.单选题- (共3题)
1.
小明不慎将一块三角形的玻璃碎成如图所示的四块(图中所标1、2、3、4),你认为将其中的哪一块带去,就能配一块与原来大小一样的三角形玻璃?应该带( )去.


A.第1块 | B.第2块 | C.第3块 | D.第4块 |
2.填空题- (共7题)
7.
如图所示,要测量池塘 AB 宽度,在池塘外选取一点 P,连接 AP、BP 并分别延长,使PC=PA,PD=PB,连接 C

A.测得 CD 长为 9 m,则池塘宽 AB 为_____m. |

9.
野营活动中,小明用等腰三角形铁皮代替锅,烙一块与铁皮形状和大小相同的饼,烙好一面后把饼翻身,这块饼仍然正好落在“锅”中,这是因为______________________________.
10.
有一个边长为 1 的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了下图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了 2019 次后形成的图形中所有的正方形的面积和是_____.

3.解答题- (共6题)
12.
(1)(观察发现)如图 1,△ABC 和△CDE 都是等边三角形,且点 B、C、E 在一条直线上,连接 BD 和AE,BD、AE 相交于点 P,则线段 BD 与 AE 的数量关系是 ,BD 与 AE 相交构成的锐角的度数是 .(只要求写出结论,不必说明理由)

(2)(深入探究 1)如图 2,△ABC 和△CDE 都是等边三角形,连接 BD 和 AE,BD、AE 相交于点 P,猜想线段 BD 与 AE 的数量关系,以及 BD 与 AE 相交构成的锐角的度数. 请说明理由结论:
理由:_______________________

(3)(深入探究 2)如图 3,△ABC 和△CDE 都是等腰直角三角形,且∠ACB=∠DCE=90°,连接 AD、BE,Q 为 AD 中点,连接 QC 并延长交 BE 于 K. 求证:QK⊥BE.

(2)(深入探究 1)如图 2,△ABC 和△CDE 都是等边三角形,连接 BD 和 AE,BD、AE 相交于点 P,猜想线段 BD 与 AE 的数量关系,以及 BD 与 AE 相交构成的锐角的度数. 请说明理由结论:
理由:_______________________

(3)(深入探究 2)如图 3,△ABC 和△CDE 都是等腰直角三角形,且∠ACB=∠DCE=90°,连接 AD、BE,Q 为 AD 中点,连接 QC 并延长交 BE 于 K. 求证:QK⊥BE.

15.
学校计划在如图所示的空地 ABCD 上种植草皮,经测量∠ADC=90°,CD = 6m ,AD = 8m , AB=26m , BC= 24m .

(1)求出空地 ABCD 的面积;
(2)若每种植 1 平方米草皮需要 200 元,问总共需投入多少元.

(1)求出空地 ABCD 的面积;
(2)若每种植 1 平方米草皮需要 200 元,问总共需投入多少元.
试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(7道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16