1.单选题- (共8题)
3.
已知一元二次方程ax2+bx+c=0(a≠0)中,下列说法:①若a+b+c=0,则b2﹣4ac>0;②若方程两根为﹣1和2,则2a+c=0;③若方程ax2+c=0有两个不相等的实根,则方程ax2+bx+c=0必有两个不相等的实根;④若b=2a+c,则方程有两个不相等的实根.其中正确的有( )
A.①②③ | B.①②④ | C.②③④ | D.①②③④ |
4.
丽华根据演讲比赛中九位评委所给的分数作了如下表格:
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
平均数 | 中位数 | 众数 | 方差 |
8.5 | 8.3 | 8.1 | 0.15 |
如果去掉一个最高分和一个最低分,则表中数据一定不发生变化的是( )
A.平均数 | B.众数 | C.方差 | D.中位数 |
5.
若一组数据x1+1,x2+1,…,xn+1的平均数为17,方差为2,则另一组数据x1+2,x2+2,…,xn+2的平均数和方差分别为( )
A.17,2 | B.18,2 | C.17,3 | D.18,3 |
2.填空题- (共5题)
10.
一商店销售某种商品,平均每天可售出20件,每件盈利40元.为了扩大销售、增加盈利,该店采取了降价措施,经过一段时间销售,发现销售单价每降低1元,平均每天可多售出2件.当每件商品降价多少元时,该商店每天销售利润为1200元?若设降价x元,可列方程___________.
12.
如图,在▱ABCD中,对角线AC、BD相交于点O,点E、F分别是边AD、AB上的点,连结OE、OF、EF.若AB=7,BC=5
,∠DAB=45°,则①点C到直线AB的距离是_____.②△OEF周长的最小值是________. 


3.解答题- (共8题)
16.
杂技演员抛球表演时,t(秒)后该球离起点的高度h(米)适用于公式h=10t-5t2.
(1)经过多少秒球回到起点的高度?
(2)经过多少秒球离起点的高度达到1.8米?
(3)若存在实数t1和t2(t1≠t2),当t=t1或t2时,球离起点的高度都为m(米),求m的取值范围.
(1)经过多少秒球回到起点的高度?
(2)经过多少秒球离起点的高度达到1.8米?
(3)若存在实数t1和t2(t1≠t2),当t=t1或t2时,球离起点的高度都为m(米),求m的取值范围.
17.
你知道古代数学家怎样解一元二次方程吗?以x2﹣2x﹣3=0为例,大致过程如下:第一步:将原方程变形为x2﹣2x=3,即x(x﹣2)=3.
第二步:构造一个长为x,宽为(x﹣2)的长方形,长比宽大2,且面积为3,如图所示.
第三步:用四个这样的长方形围成一个大正方形,中间是一个小正方形,如图所示.
第四步:计算大正方形面积用x表示为 .长方形面积为常数 .小正方形面积为常数 .
由观察可得,大正方形面积等于四个长方形与小正方形面积之和,得方程 ,两边开方可求得:x1=3,x2=﹣1.
(1)第四步中横线上应填入 ; ; ; .
(2)请参考古人的思考过程,画出示意图,写出步骤,解方程x2﹣x﹣1=0.
第二步:构造一个长为x,宽为(x﹣2)的长方形,长比宽大2,且面积为3,如图所示.
第三步:用四个这样的长方形围成一个大正方形,中间是一个小正方形,如图所示.
第四步:计算大正方形面积用x表示为 .长方形面积为常数 .小正方形面积为常数 .
由观察可得,大正方形面积等于四个长方形与小正方形面积之和,得方程 ,两边开方可求得:x1=3,x2=﹣1.
(1)第四步中横线上应填入 ; ; ; .
(2)请参考古人的思考过程,画出示意图,写出步骤,解方程x2﹣x﹣1=0.

18.
如图直角坐标系中直线 AB 与 x 轴正半轴、y 轴正半轴交于 A,B 两点,已知 B(0,4),∠BAO=30°,P,Q 分别是线段 OB,AB 上的两个动点,P 从 O 出发以每秒 3 个单位长度的速度向终点 B 运动,Q 从 B 出发以每秒 8 个单位长度的速度向终点 A 运动,两点同时出发,当其中一点到达终点时整个运动结束,设运动时间为 t(秒).
(1)求线段 AB 的长,及点 A 的坐标;
(2)t 为何值时,△BPQ 的面积为
;
(3)若 C 为 OA 的中点,连接 QC,QP,以 QC,QP 为邻边作平行四边形 PQCD,
①t 为何值时,点 D 恰好落在坐标轴上;
②是否存在时间 t 使 x 轴恰好将平行四边形 PQCD 的面积分成 1∶3 的两部分,若存在,直接写出 t 的值.
(1)求线段 AB 的长,及点 A 的坐标;
(2)t 为何值时,△BPQ 的面积为

(3)若 C 为 OA 的中点,连接 QC,QP,以 QC,QP 为邻边作平行四边形 PQCD,
①t 为何值时,点 D 恰好落在坐标轴上;
②是否存在时间 t 使 x 轴恰好将平行四边形 PQCD 的面积分成 1∶3 的两部分,若存在,直接写出 t 的值.

19.
某公司销售部有销售人员15人,销售部为了制定某种商品的月销售定额,统计了这15人某月的销售量如下:
(1)求这15位营销人员销售量的平均数、中位数、众数(直接写出结果,不要求过程);
(2)假设销售部把每位销售人员的月销售定额规定为32件,你认为是否合理,为什么?如果不合理,请你从表中选一个较合理的销售定额,并说明理由.
每人销售件数 | 180 | 51 | 25 | 21 | 15 | 12 |
人数 | 1 | 1 | 3 | 5 | 3 | 2 |
(1)求这15位营销人员销售量的平均数、中位数、众数(直接写出结果,不要求过程);
(2)假设销售部把每位销售人员的月销售定额规定为32件,你认为是否合理,为什么?如果不合理,请你从表中选一个较合理的销售定额,并说明理由.
试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(5道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:2
5星难题:0
6星难题:5
7星难题:0
8星难题:5
9星难题:9