1.单选题- (共3题)
2.填空题- (共10题)
7.
数列
的前
项为
,若对任意正整数
,有
(其中
为常数,
且
),则称数列
是以
为周期,以
为周期公比的似周期性等比数列,已知似周期性等比数列
的前4项为1,1,1,2,周期为4,周期公比为3,则数列
前
项的和等于__________.(
为正整数)















3.解答题- (共4题)
14.
在直角坐标系平面
上的一列点
,
,…,
,记为
,若由
构成的数列
满足
,
,其中
为与
轴正方向相同的单位向量,则称
为
点列.
(1)判断
,
,
,…,
,是否为
点列,并说明理由;
(2)若
为
点列.且点
在点
的右上方,(即
)任取其中连续三点
,
,
判断
的形状(锐角三角形,直角三角形,钝角三角形),并给予证明;
(3)若
为
点列,正整数
,满足
.求证:
.













(1)判断





(2)若









(3)若





16.
已知圆C1的圆心在坐标原点O,且恰好与直线
相切.
(Ⅰ)求圆C1的标准方程;
(Ⅱ)设点A为圆上一动点,AN垂直于x轴于点N,若动点Q满足
(其中m为非零常数),试求动点Q的轨迹方程;
(Ⅲ)在(Ⅱ)的结论下,当m=
时,得到动点Q的轨迹为曲线C,与l1垂直的直线l与曲线C交于B,D两点,求△OBD面积的最大值.

(Ⅰ)求圆C1的标准方程;
(Ⅱ)设点A为圆上一动点,AN垂直于x轴于点N,若动点Q满足

(其中m为非零常数),试求动点Q的轨迹方程;
(Ⅲ)在(Ⅱ)的结论下,当m=

试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(10道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17