1.单选题- (共8题)
2.填空题- (共2题)
9.
如图是一个三级台阶,它的每一级的长、宽和高分别为5 dm、3 dm和1 dm,A和B是这个台阶两个相对的端点,A点有一只蚂蚁,想到B点去吃可口的食物.请你想一想,这只蚂蚁从A点出发,沿着台阶面爬到B点的最短路程是 dm.

3.解答题- (共6题)
11.
某学校要开展校园文化艺术节活动,为了合理编排节目,对学生最喜爱的歌曲、舞蹈、小品、相声四类节目进行了一次抽样调查(每名学生必须选择且只能选择一类),并将调查结果绘制成如下不完整的统计图.

请你根据图中信息,回答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;
(3)若该学校共有学生2000人,请问该学校大约有多少同学最喜爱“小品”节目?

请你根据图中信息,回答下列问题:
(1)求本次调查的学生人数,并补全条形统计图;
(2)在扇形统计图中,求“歌曲”所在扇形的圆心角的度数;
(3)若该学校共有学生2000人,请问该学校大约有多少同学最喜爱“小品”节目?
13.
已知;如图1,菱形ABCD的边AB在x轴上,点B的坐标为
,点C在y轴上,
.
(1)求点A的坐标;
(2)如图2,连接AC,点P为△ACD内一点,BP与AC交于点G,
,点E、F分别在线段AP、BP上,且
.若
,求
的值;
(3)如图3,在(2)的条件下,当
时,试判断△PAF形状并说明理由.



(1)求点A的坐标;
(2)如图2,连接AC,点P为△ACD内一点,BP与AC交于点G,




(3)如图3,在(2)的条件下,当

14.
综合与实践
问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.
探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:
证明:∵BE=AB,∴AE=2A

问题情境:在数学活动课上,老师出示了这样一个问题:如图1,在矩形ABCD中,AD=2AB,E是AB延长线上一点,且BE=AB,连接DE,交BC于点M,以DE为一边在DE的左下方作正方形DEFG,连接AM.试判断线段AM与DE的位置关系.
探究展示:勤奋小组发现,AM垂直平分DE,并展示了如下的证明方法:
证明:∵BE=AB,∴AE=2A
A. ∵AD=2AB,∴AD=AE. ∵四边形ABCD是矩形,∴AD∥B | B. ∴ ![]() ∵BE=AB,∴ ![]() 即AM是△ADE的DE边上的中线, 又∵AD=AE,∴AM⊥DE.(依据2) ∴AM垂直平分DE. 反思交流: (1)①上述证明过程中的“依据1”“依据2”分别是指什么? ②试判断图1中的点A是否在线段GF的垂直平分线上,请直接回答,不必证明; (2)创新小组受到勤奋小组的启发,继续进行探究,如图2,连接CE,以CE为一边在CE的左下方作正方形CEFG,发现点G在线段BC的垂直平分线上,请你给出证明; 探索发现: (3)如图3,连接CE,以CE为一边在CE的右上方作正方形CEFG,可以发现点C,点B都在线段AE的垂直平分线上,除此之外,请观察矩形ABCD和正方形CEFG的顶点与边,你还能发现哪个顶点在哪条边的垂直平分线上,请写出一个你发现的结论,并加以证明. |

15.
如图1,在等腰直角三角形ABC中,∠ACB=90°,AC=BC=4,D是AB的中点,E,F分别是AC,BC上的点(点E不与端点A,C重合),且AE=CF.
(1)求证:△ADE≌△CDF
(2)如图2连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.求证:四边形EDFG是正方形.
(3)当点E在什么位置时,四边形EDFG的面积最小?直接写出点E的位置及四边形EDFG面积的最小值.

(1)求证:△ADE≌△CDF
(2)如图2连接EF并取EF的中点O,连接DO并延长至点G,使GO=OD,连接DE,DF,GE,GF.求证:四边形EDFG是正方形.
(3)当点E在什么位置时,四边形EDFG的面积最小?直接写出点E的位置及四边形EDFG面积的最小值.


试卷分析
-
【1】题量占比
单选题:(8道)
填空题:(2道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:16