1.单选题- (共7题)
1.
某次数学测试中,八年级一班平均分为80分,八年级二班的平均分为82分,下列说法错误的是( )
A.两个班的平均分为81分 |
B.两个班的平均分不可能高于82分 |
C.若一班的人数比二班多,则两个班的平均分低于81分 |
D.若两个班的人数相同,则两个班的平均分为81分 |
5.
四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
①AD∥BC;②AD=BC;③OA=OC;④OB=OD
从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
A.3种 | B.4种 | C.5种 | D.6种 |
6.
如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()

甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()

A.甲正确,乙错误 | B.乙正确,甲错误 | C.甲、乙均正确 | D.甲、乙均错误 |
2.填空题- (共4题)
3.解答题- (共6题)
13.
某工厂甲、乙两个车间各有工人200人,为了解这两个车间工人的生产技能情况,进行了抽样调查,过程如下,请补充完整.
收集数据从甲、乙两个车间各抽取20名工人进行生产技能测试,测试成绩如下:
甲:78 86 74 85 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙:93 67 88 81 72 81 94 83 77 83 80 81 64 81 73 78 82 80 70 52
整理数据按如下分数段整理、描述这两组样本数据:
(说明:成绩80分及以上为生产技能优秀,70~79分为生产技能良好,60~69分为生产技能合格,60分以下为生产技能不合格)
分析数据两组样本数据的平均数、中位数、众数如表所示:
得出结论可以推断_____车间工人的生产技能水平较高,理由为______.(至少从两个角度说明推断的合理性)
收集数据从甲、乙两个车间各抽取20名工人进行生产技能测试,测试成绩如下:
甲:78 86 74 85 75 76 87 70 75 90 75 79 81 70 74 80 86 69 83 77
乙:93 67 88 81 72 81 94 83 77 83 80 81 64 81 73 78 82 80 70 52
整理数据按如下分数段整理、描述这两组样本数据:
| 50≤x≤59 | 60≤x≤69 | 70≤x≤79 | 80≤x≤89 | 90≤x≤99 |
甲 | 0 | _____ | 11 | ______ | 1 |
乙 | 1 | 2 | 5 | 10 | ______ |
(说明:成绩80分及以上为生产技能优秀,70~79分为生产技能良好,60~69分为生产技能合格,60分以下为生产技能不合格)
分析数据两组样本数据的平均数、中位数、众数如表所示:
| 平均数 | 中位数 | 众数 |
甲 | _____ | 77.5 | 75 |
乙 | 78 | _____ | ______ |
得出结论可以推断_____车间工人的生产技能水平较高,理由为______.(至少从两个角度说明推断的合理性)
14.
小明家距学校2000米,某天他步行去上学,走到路程的一半时发现忘带作业,此时离上课时间还有25分钟,于是他立刻步行回家取,随后骑车返回学校,在上课前5分钟到达了学校.若小明骑车的平均速度是步行速度的5倍,求小明步行的平均速度.
16.
已知,△ABC,AD⊥BD于点D,AE⊥CE于点E,连接D

A. (1)如图1,若BD,CE分别为△ABC的外角平分线,求证:DE= ![]() (2)如图2,若BD,CE分别为△ABC的内角平分线,(1)中的结论成立吗?若成立请说明理由;若不成立,请猜想出新的结论并证明; (3)如图3,若BD,CE分别为△ABC的一个内角和一个外角的平分线,AB=8,BC=10,AC=7,请直接写出DE的长为______. |

试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:17