重庆市第一中学2018-2019学年高二下学期期中考试数学(理)试题

适用年级:高二
试卷号:574068

试卷类型:期中
试卷考试时间:2019/6/4

1.单选题(共11题)

1.
已知函数,若对区间内的任意实数,都有成立,则实数的取值范围是(   )
A.B.C.D.
2.
已知在三棱锥中,底面为等腰三角形,,则该三棱锥外接球的表面积为(  )
A.B.C.D.
3.
已知二项式,且,则(   )
A.B.C.D.
4.
甲、乙、丙、丁、戊五位同学站成一排照相,其中要求甲和乙必须相邻,且丙不能排最左端,则不同的排法共有( )
A.12种B.24种
C.36种D.48种
5.
为研究某种细菌在特定环境下,随时间变化的繁殖情况,得到如下实验数据:
天数(天)
3
4
5
6
繁殖个数(千个)
2.5
3

4.5
 
由最小二乘法得的线性回归方程为,则当时,繁殖个数的预测值为( )
A.4.9B.5.25
C.5.95D.6.15
6.
某学生寝室6个人在“五一节”前一天各自准备了一份礼物送给室友,他们把6份礼物全部放在一个箱子里,每人从中随机拿一份礼物,则恰好有3个人拿到自己准备的那份礼物的概率为(  )
A.B.C.D.
7.
抛掷两枚均匀骰子,观察向上的点数,记事件为“两个点数不同”,事件为“两个点数中最大点数为4”,则( )
A.B.C.D.
8.
如图所示的折线图为某小区小型超市今年一月份到五月份的营业额和支出数据(利润营业额支出),根据折线图,下列说法中错误的是(  )
A.该超市这五个月中的营业额一直在增长;
B.该超市这五个月的利润一直在增长;
C.该超市这五个月中五月份的利润最高;
D.该超市这五个月中的营业额和支出呈正相关.
9.
已知某射击运动员射击1次命中目标的概率为,记他在次独立射击中命中目标的次数为随机变量,则( )
A.B.C.D.
10.
已知随机变量,且,则( )
A.0.2B.0.3C.0.5D.0.7
11.
观察下列各式:
…,根据以上规律,则( )
A.123B.76C.47D.40

2.填空题(共3题)

12.
若曲线在点处的切线与直线垂直,则常数___.
13.
已知双曲线的渐近线方程为,抛物线的焦点与双曲线的右焦点重合,过的直线交抛物线两点,为坐标原点,若向量的夹角为,则的面积为_____.
14.
已知的二项展开式中二项式系数的最大项是第3项和第4项,则的展开式中的常数项为_____.

3.解答题(共4题)

15.
已知函数的极值点,且曲线 在两点)处的切线相互平行.
(I)求的值;
(II)设切线轴上的截距分别为,求的取值范围.
16.
如图,在直三棱柱 中,的中点,

(I)求证:平面
(II)若,求二面角的余弦值.
17.
已知是右焦点为的椭圆上一动点,若的最小值为,椭圆的离心率为
(I)求椭圆的方程;
(II)当轴且点轴上方时,设直线与椭圆交于不同的两点,若平分,则直线的斜率是否为定值?若是,求出这个定值;若不是,说明理由.
18.
今年4月23日我市正式宣布实施“3+1+2”的高考新方案,“3”是指必考的语文、数学、外语三门学科,“1”是指在物理和历史中必选一科,“2”是指在化学、生物、政治、地理四科中任选两科.为了解我校高一学生在物理和历史中的选科意愿情况,进行了一次模拟选科. 已知我校高一参与物理和历史选科的有1800名学生,其中男生1000人,女生800人. 按分层抽样的方法从中抽取了36个样本,统计知其中有17个男生选物理,6个女生选历史.
(I)根据所抽取的样本数据,填写答题卷中的列联表. 并根据统计量判断能否有的把握认为选择物理还是历史与性别有关?
(II)在样本里选历史的人中任选4人,记选出4人中男生有人,女生有人,求随机变量 的分布列和数学期望.(的计算公式见下),临界值表:












 
试卷分析
  • 【1】题量占比

    单选题:(11道)

    填空题:(3道)

    解答题:(4道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:18