1.单选题- (共4题)
1.
下列命题:①“
”是“存在
,使得
成立”的充分不必要条件;②“
”是“存在
,使得
成立”的必要条件;③“
”是“不等式
对一切
恒成立”的充要条件. 其中所以真命题的序号是









A.③ | B.②③ | C.①② | D.①③ |
2.选择题- (共3题)
3.填空题- (共10题)
4.解答题- (共5题)
19.
已知点
,(
为正整数)都在函数
的图象上.
(1)若数列
是等差数列,证明:数列
是等比数列;
(2)设
,过点
的直线与两坐标轴所围成的三角形面积为
,试求最小的实数
,使
对一切正整数
恒成立;
(3)对(2)中的数列
,对每个正整数
,在
与
之间插入
个3,得到一个新的数列
,设
是数列
的前
项和,试探究2016是否是数列
中的某一项,写出你探究得到的结论并给出证明.



(1)若数列


(2)设






(3)对(2)中的数列










20.
设
个正数
依次围成一个圆圈,其中
是公差为
的等差数列,而
是公比为
的等比数列.
(1)若
,求数列
的所有项的和
;
(2)若
,求
的最大值;
(3)当
时是否存在正整数
,满足
?若存在,求出
值;若不存在,请说明理由.







(1)若



(2)若


(3)当




试卷分析
-
【1】题量占比
单选题:(4道)
选择题:(3道)
填空题:(10道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19