1.单选题- (共6题)
3.
两组邻边分别相等的四边形叫做“筝形”,如图,四边形ABCD是一个筝形,其中AD=CD,AB=CB,在探究筝形的性质时,得到如下结论:①△ABD≌△CBD;②AC⊥BD;③四边形ABCD的面积=
AC•BD,其中正确的结论有()



A.0个 | B.1个 | C.2个 | D.3个 |
6.
在△ABC和△A'B'C'中,∠B=∠B'=90°,则下列条件中,不一定能判定△ABC和△A'B'C'全等的是( )
A.AB=A′B′,BC=B′C′ | B.AB=A′B′,∠A=∠A′ |
C.∠A=∠A′,∠C=∠C′ | D.AC=A′C′,BC=B′C′ |
2.填空题- (共5题)
9.
如图,在△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,设△ABC、△ADF、△BEF的面积分别为S△ABC,S△ADF,S△BEF,且S△ABC=12,则S△ADF-S△BEF=_________.

3.解答题- (共8题)
14.
如图,在△ABC中,点D是BC边的中点,DE⊥BC,∠ABC的角平分线BF交DE于点P,交AC于点M,连接PC.
(Ⅰ)若∠A=60°,∠ACP=24°,求∠ABP的度数;
(Ⅱ)若AB=BC,BM2+CM2=m2(m>0),△PCM的周长为m+2时,求△BCM的面积(用含m的代数式表示).
(Ⅰ)若∠A=60°,∠ACP=24°,求∠ABP的度数;
(Ⅱ)若AB=BC,BM2+CM2=m2(m>0),△PCM的周长为m+2时,求△BCM的面积(用含m的代数式表示).

18.
如图,长方形ABCD的两边长分别为m+13和m+3(其中为m正整数),且正方形EFGH的周长与长方形ABCD的周长相等.

(Ⅰ)求正方形EFGH的边长(用含有m的代数式表示);
(Ⅱ)长方形ABCD的面积记为S1,正方形EFGH的面积记为S2,请比较S1和S2的大小,并说明理由.

(Ⅰ)求正方形EFGH的边长(用含有m的代数式表示);
(Ⅱ)长方形ABCD的面积记为S1,正方形EFGH的面积记为S2,请比较S1和S2的大小,并说明理由.
试卷分析
-
【1】题量占比
单选题:(6道)
填空题:(5道)
解答题:(8道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19