1.单选题- (共7题)
6.
在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有
.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下一个三条侧棱两两垂直的三棱锥
,如果用
,
,
表示三个侧面面积,
表示截面面积,那么类比得到的结论是( )








A.![]() | B.![]() |
C.![]() | D.![]() |
7.
老王和小王父子俩玩一种类似于古代印度的“梵塔游戏”;有3个柱子甲、乙、丙,在甲柱上现有4个盘子,最上面的两个盘子大小相同,从第二个盘子往下大小不等,大的在下,小的在上(如图),把这4个盘子从甲柱全部移到乙柱游戏即结束,在移动过程中每次只能移动一个盘子,甲、乙、丙柱都可以利用,且3个柱子上的盘子始终保持小的盘子不能放在大的盘子之下,设游戏结束需要移动的最少次数为
,则
( )




A.7 | B.8 | C.11 | D.15 |
2.填空题- (共2题)
9.
在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时,甲说:“主要责任在乙”;乙说:“丙应负主要责任”;丙说“甲说的对”;丁说:“反正我没有责任”.四人中只有一个人说的是真话,则该事故中需要负主要责任的人是_____.
3.解答题- (共4题)
11.
已知抛物线
的焦点为椭圆
的右焦点
, 点
为此抛物线与椭圆
在第一象限的交点,且
.
(1)求椭圆
的方程;
(2)过点
作两条互相垂直的直线
,直线
与椭圆
交于
两点,直线
与直线
交于点
,求
的取值范围.






(1)求椭圆

(2)过点









12.
(本小题满分12分)某中学的环保社团参照国家环境标准制定了该校所在区域空气质量指数与空气质量等级对应关系如下表(假设该区域空气质量指数不会超过
):
该社团将该校区在
年
天的空气质量指数监测数据作为样本,绘制的频率分布直方图如下图,把该直方图所得频率估计为概率.

(Ⅰ)请估算
年(以
天计算)全年空气质量优良的天数(未满一天按一天计算);
(Ⅱ)该校
年
月
、
日将作为高考考场,若这两天中某天出现
级重度污染,需要净化空气费用
元,出现
级严重污染,需要净化空气费用
元,记这两天净化空气总费用为
元,求
的分布列及数学期望.

空气质量指数 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
空气质量等级 | ![]() | ![]() | ![]() | ![]() | ![]() | ![]() |
该社团将该校区在



(Ⅰ)请估算


(Ⅱ)该校










试卷分析
-
【1】题量占比
单选题:(7道)
填空题:(2道)
解答题:(4道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:13