1.填空题- (共14题)
2.
下列命题:①“全等三角形的面积相等”的逆命题;②“正三角形的三个角均为60°”的否命题;③“若k<0,则方程x2+(2k+1)x+k=0必有两相异实数根”的逆否命题.其中真命题的个数是________个.
4.
命题p:任意两个等边三角形都是相似的.
①它的否定是_________________________________________________________;
②否命题是_____________________________________________________________.
①它的否定是_________________________________________________________;
②否命题是_____________________________________________________________.
9.
下面是关于公差d>0的等差数列{an}的四个命题:
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列
是递增数列;
p4:数列{an+3nd}是递增数列.
其中的真命题为________.
p1:数列{an}是递增数列;
p2:数列{nan}是递增数列;
p3:数列

p4:数列{an+3nd}是递增数列.
其中的真命题为________.
10.
从“充分不必要条件”“必要不充分条件”“充要条件”“既不充分也不必要条件”中,选出适当的一种填空:
(1)记集合A={-1,p,2},B={2,3},则“p=3”是“A∩B=B”的__________________;
(2)“a=1”是“函数f(x)=|2x-a|在区间
上为增函数”的________________.
(1)记集合A={-1,p,2},B={2,3},则“p=3”是“A∩B=B”的__________________;
(2)“a=1”是“函数f(x)=|2x-a|在区间

12.
已知命题p:所有有理数都是实数,命题q:正数的对数都是负数.则下列命题中为真命题的是________(填所有真命题的序号).
①(¬p)∨q;②p∧q;③p∨q;④(¬p)∨(¬q).
①(¬p)∨q;②p∧q;③p∨q;④(¬p)∨(¬q).
2.解答题- (共5题)
16.
把下列各命题作为原命题,分别写出它们的逆命题、否命题和逆否命题.
(1)若α=β,则sin α=sin β;
(2)若对角线相等,则梯形为等腰梯形;
(3)已知a,b,c,d都是实数,若a=b,c=d,则a+c=b+d.
(1)若α=β,则sin α=sin β;
(2)若对角线相等,则梯形为等腰梯形;
(3)已知a,b,c,d都是实数,若a=b,c=d,则a+c=b+d.
17.
写出下列命题的否定,并判断其真假:
(1)p:末位数字为9的整数能被3整除;
(2)p:有的素数是偶数;
(3)p:至少有一个实数x,使x2+1=0;
(4)p:∀x,y∈R,x2+y2+2x-4y+5=0.
(1)p:末位数字为9的整数能被3整除;
(2)p:有的素数是偶数;
(3)p:至少有一个实数x,使x2+1=0;
(4)p:∀x,y∈R,x2+y2+2x-4y+5=0.
18.
设有两个命题:p:关于x的不等式x2+2x-4-a≥0对一切x∈R恒成立;q:已知a≠0,a≠±1,函数y=-|a|x在R上是减函数,若p∧q为假命题,p∨q为真命题,求实数a的取值范围.
试卷分析
-
【1】题量占比
填空题:(14道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:19