1.单选题- (共11题)
10.
《九章算术》中的“两鼠穿墙”问题为“今有垣厚五尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢?”可用如图所示的程序框图解决此类问题.现执行该程序框图,输入的
的值为33,则输出的
的值为




A.4 | B.5 | C.6 | D.7 |
2.多选题- (共1题)
12.
下表是某电器销售公司2018年度各类电器营业收入占比和净利润占比统计表:
则下列判断中正确的是()
| 空调类 | 冰箱类 | 小家电类 | 其它类 |
营业收入占比 | 90.10% | 4.98% | 3.82% | 1.10% |
净利润占比 | 95.80% | ﹣0.48% | 3.82% | 0.86% |
则下列判断中正确的是()
A.该公司2018年度冰箱类电器销售亏损 |
B.该公司2018年度小家电类电器营业收入和净利润相同 |
C.该公司2018年度净利润主要由空调类电器销售提供 |
D.剔除冰箱类电器销售数据后,该公司2018年度空调类电器销售净利润占比将会降低 |
3.填空题- (共4题)
4.解答题- (共5题)
21.
随着智能手机的普及,使用手机上网成为了人们日常生活的一部分,很多消费者对手机流量的需求越来越大.某通信公司为了更好地满足消费者对流量的需求,准备推出一款流量包.该通信公司选了人口规模相当的4个城市采用不同的定价方案作为试点,经过一个月的统计,发现该流量包的定价:
(单位:元/月)和购买总人数
(单位:万人)的关系如表:
(1)根据表中的数据,请用线性回归模型拟合
与
的关系,求出
关于
的回归方程;并估计10元/月的流量包将有多少人购买?
(2)若把50元/月以下(不包括50元)的流量包称为低价流量包,50元以上(包括50元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明是否能在犯错误的概率不超过0.01的前提下,认为购买人的年龄大小与流量包价格高低有关?
参考公式:其中
,
,
.
,其中
参考数据:


定价![]() | 20 | 30 | 50 | 60 |
年轻人(40岁以下) | 10 | 15 | 7 | 8 |
中老年人(40岁以及40岁以上) | 20 | 15 | 3 | 2 |
购买总人数![]() | 30 | 30 | 10 | 10 |
(1)根据表中的数据,请用线性回归模型拟合




(2)若把50元/月以下(不包括50元)的流量包称为低价流量包,50元以上(包括50元)的流量包称为高价流量包,试运用独立性检验知识,填写下面列联表,并通过计算说明是否能在犯错误的概率不超过0.01的前提下,认为购买人的年龄大小与流量包价格高低有关?
定价![]() | 小于50元 | 大于或等于50元 | 总计 |
年轻人(40岁以下) | | | |
中老年人(40岁以及40岁以上) | | | |
总计 | | | |
参考公式:其中





参考数据:
![]() | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
![]() | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
试卷分析
-
【1】题量占比
单选题:(11道)
多选题:(1道)
填空题:(4道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:21