1.单选题- (共3题)
2.
已知函数
是
上的偶函数,对于任意
都有
成立,当
,且
时,都有
.给出以下三个命题:
①直线
是函数
图像的一条对称轴;
②函数
在区间
上为增函数;
③函数
在区间
上有五个零点.
问:以上命题中正确的个数有( ).







①直线


②函数


③函数


问:以上命题中正确的个数有( ).
A.![]() | B.![]() | C.![]() | D.![]() |
2.填空题- (共10题)
7.
如图所示,将一圆的八个等分点分成相间的两组,连接每组的四个点得到两个正方形.去掉两个正方形内部的八条线段后可以形成一正八角星.设正八角星的中心为O,并且
,
,若将点O到正八角是16个顶点的向量都写成
,
的形式,则
的取值范围为( )







A.![]() | B.![]() |
C.![]() | D.![]() |
13.
高三某位同学参加物理、化学、政治科目的等级考,已知这位同学在物理、化学、政治科目考试中达
的概率分别为
、
、
,这三门科目考试成绩的结果互不影响,则这位考生至少得
个
的概率是____________.






3.解答题- (共5题)
16.
给定数列
,若数列
中任意(不同)两项之和仍是该数列中的一项,则称该数列是“封闭数列”.
(1)已知数列
的通项公式为
,试判断
是否为封闭数列,并说明理由;
(2)已知数列
满足
且
,设
是该数列
的前
项和,试问:是否存在这样的“封闭数列”
,使得对任意
都有
,且
,若存在,求数列
的首项
的所有取值;若不存在,说明理由;
(3)证明等差数列
成为“封闭数列”的充要条件是:存在整数
,使
.


(1)已知数列



(2)已知数列












(3)证明等差数列



试卷分析
-
【1】题量占比
单选题:(3道)
填空题:(10道)
解答题:(5道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:18