1.单选题- (共11题)
8.
我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9填入
的方格内,使三行,三列和两条对角线上的三个数字之和都等于15.一般地,将连续的正整数
填入
个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做
阶幻方.记
阶幻方的对角线上的数字之和为
,如图三阶幻方的
,那么
的值为( )










A.41 | B.45 | C.369 | D.321 |
2.填空题- (共3题)
3.解答题- (共6题)
19.
已知椭圆
的左、右焦点分别为
、
,椭圆的离心率为
,过椭圆
的左焦点
,且斜率为1的直线
,与以右焦点
为圆心,半径为
的圆
相切.
(1)求椭圆
的标准方程;
(2)线段
是椭圆
过右焦点
的弦,且
,求
的面积的最大值以及取最大值时实数
的值.










(1)求椭圆

(2)线段






20.
某学校高二年级举行了由全体学生参加的一分钟跳绳比赛,计分规则如下表:
年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.

(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)
(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数
近似服从正态分布
,其中
,
为样本平均数的估计值(同一组中数据以这组数据所在区间中点值作代表).利用所得的正态分布模型,解决以下问题:
(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);
(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为
,求随机变量
的分布列和数学期望与方差.
附:若随机变量
服从正态分布
,则
,
,
.
每分钟跳绳个数 | ![]() | ![]() | ![]() | ![]() | ![]() |
得分 | 16 | 17 | 18 | 19 | 20 |
年级组为了解学生的体质,随机抽取了100名学生的跳绳个数作为一个样本,绘制了如下样本频率分布直方图.

(1)现从样本的100名学生跳绳个数中,任意抽取2人的跳绳个数,求两人得分之和小于35分的概率;(用最简分数表示)
(2)若该校高二年级共有2000名学生,所有学生的一分钟跳绳个数




(i)估计每分钟跳绳164个以上的人数(结果四舍五入到整数);
(ii)若在全年级所有学生中随机抽取3人,每分钟跳绳在179个以上的人数为


附:若随机变量





试卷分析
-
【1】题量占比
单选题:(11道)
填空题:(3道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:0
7星难题:0
8星难题:0
9星难题:20