黑龙江省大庆实验中学2019-2020学年高三上学期期中数学(理)试题

适用年级:高三
试卷号:528420

试卷类型:期中
试卷考试时间:2020/1/11

1.单选题(共11题)

1.
已知集合,则(    )
A.B.C.D.
2.
设函数,其中,若不等式有且只有三个整数解,则的取值范围是(   )
A.B.C.D.
3.
已知在中,,则三角形是(    )
A.锐角三角形B.直角三角形
C.钝角三角形D.锐角、直角或钝角三角形都可能
4.
已知为奇函数,则的一个取值是(    )
A.B.C.D.
5.
的夹角为,则(   )
A.B.C.1D.-2
6.
已知等差数列的前n项和为,当取最大值时n的值为(    )
A.3B.4C.5D.6
7.
,则(    )
A.B.C.D.
8.
过某一圆锥的高的中点和一个三等分点(该三等分点距圆锥顶点比距圆锥底面圆心更近),分别作平行于该圆锥底面的平面,圆锥被分割成三个部分,则这三个部分的侧面积之比为(    )
A.B.C.D.
9.
已知三棱锥A-BCD,点EFG分别是BCACAD的中点,直线ABCD所成的角为,则的大小是(    )
A.B.C.D.
10.
过点且与直线平行的直线方程是(    )
A.B.C.D.
11.
已知双曲线,双曲线的焦点在轴上,它的渐近线与双曲线相同,则双曲线的离心率为(   )
A.B.C.D.

2.填空题(共4题)

12.
设曲线在点处的切线方程为,则_______.
13.
已知四个命题:①,②,③,④,正确命题的序号是______.(填写所有正确答案的序号)
14.
已知,则______.
15.
已知的等比中项,则圆锥曲线的离心率是_____.

3.解答题(共5题)

16.
已知函数.
(Ⅰ)讨论的单调性,并证明有且仅有两个零点;
(Ⅱ)设的一个零点,证明曲线在点处的切线也是曲线的切线.
17.
已知等差数列的前项和为,且.
(1)求数列的通项公式;
(2)若,求数列的前项和.
18.
如图,在四棱锥中,已知平面,且四边形为直角梯形,.

(Ⅰ)求平面与平面所成二面角(锐角)的余弦值;
(Ⅱ)点是线段上的动点,当直线所成角最小时,求线段的长度.
19.
已知椭圆,短轴长为,离心率为,直线与椭圆交于不同的两点.
(Ⅰ)求椭圆的方程;
(Ⅱ)已知点,且的面积为,求的值.
20.
网购是现在比较流行的一种购物方式,现随机调查50名个人收入不同的消费者是否喜欢网购,调查结果表明:在喜欢网购的25人中有18人是低收入的人,另外7人是高收入的人,在不喜欢网购的25人中有6人是低收入的人,另外19人是高收入的人.
 
喜欢网购
不喜欢网购
总计
低收入的人
 
 
 
高收入的人
 
 
 
总计
 
 
 
 
(Ⅰ)试根据以上数据完成列联表,并用独立性检验的思想,指出有多大把握认为是否喜欢网购与个人收入高低有关系;
(Ⅱ)将5名喜欢网购的消费者编号为1、2、3、4、5,将5名不喜欢网购的消费者编号也记作1、2、3、4、5,从这两组人中各任选一人进行交流,求被选出的2人的编号之和为2的倍数的概率.
参考公式:
参考数据:

0.10
0.05
0.025
0.010
0.005
0.001

2.706
3.841
5.024
6.635
7.879
10.828
 
试卷分析
  • 【1】题量占比

    单选题:(11道)

    填空题:(4道)

    解答题:(5道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:0

    5星难题:0

    6星难题:0

    7星难题:0

    8星难题:0

    9星难题:20