人教版数学八年级(下)平行四边形单元试卷

适用年级:初二
试卷号:202969

试卷类型:单元测试
试卷考试时间:2018/4/8

1.选择题(共1题)

1.36个同学做值日,9人一组,可以分{#blank#}1{#/blank#}组.

2.单选题(共4题)

2.
如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()
A.16B.17
C.18D.19
3.
将矩形纸片ABCD按如图所示的方式折叠,恰好得到菱形AECF,若AB=3,则菱形AECF的面积为(    )
A.1B.2C.2D.4
4.
顺次连结矩形四边中点所得的四边形一定是()
A.菱形B.矩形C.正方形D.等腰梯形
5.
如图,已知正方形ABCD的边长为2,E是边BC上的动点,BF⊥AE交CD于点F,垂足为点G,连接CG,下列说法:①AG>GE;②AE=BF;③点G运动的路径长为π;④CG的最小值﹣1.其中正确的说法有()个.
A.4B.3C.2D.1

3.填空题(共1题)

6.
如图,已知∠MON=30°,BOM上一点,BAONA,四边形ABCD为正方形,P为射线BM上一动点,连结CP,将CP绕点C顺时针方向旋转90°得CE,连结BE,若AB=4,则BE的最小值为_____.

4.解答题(共7题)

7.
在边长为2的正方形ABCD中,点P、Q分别是边AB、BC上的两个动点(与点A、B、C不重合),且始终保持BP=BQ,AQ⊥QE,QE交正方形外角平分线CE于点E,AE交CD于点F,连结PQ.
(1)求证:△APQ≌△QCE;
(2)求∠QAE的度数;
(3)设BQ=x,当x为何值时,QF∥CE,并求出此时△AQF的面积.
8.
如图,在长方形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:
(1)PC=______cm.(用t的代数式表示)
(2)当t为何值时,△ABP≌△DCP?
(3)当点P从点B开始运动,同时,点Q从点C出发,以v cm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.
9.
在Rt△ABC中,AB=AC,∠BAC=90°,O为BC的中点。
(1)写出点O到△ABC的三个顶点A、B、C的距离的大小关系并说明理由;
(2)如果点M、N分别在线段AB、AC上移动,在移动中保持AN=BM,请判断△OMN的形状,并证明你的结论。
10.
如图,菱形ABCD的对角线ACBD相交于点O,过点DDEACDE=AC,连接CEOE,连接AEOD于点F
(1)求证:OE=CD
(2)若菱形ABCD的边长为2,∠ABC=60°,求AE的长.
11.
正方形中,E是边上一点,
(1)将绕点A按顺时针方向旋转,使重合,得到,如图1所示.观察可知:与相等的线段是_______,______.
(2)如图2,正方形中,分别是边上的点,且,试通过旋转的方式说明:
(3)在(2)题中,连接分别交,你还能用旋转的思想说明.
12.
已知:如图,在△ABC中,AB=AC,D为边BC上一点,以AB,BD为邻边作平行四边形ABDE,连接AD,EC.
(1)求证:△ADC≌△ECD;
(2)当点D在什么位置时,四边形ADCE是矩形,请说明理由.
13.
已知,正方形ABCD的边长为6,菱形EFGH的三个顶点E、G、H 分别在正方形ABCD边AB、CD、DA上,AH=2.
(1)如图1,当DG=2,且点F在边BC上时.

求证:① △AHE≌△DGH;
② 菱形EFGH是正方形;
(2)如图2,当点F在正方形ABCD的外部时,连接CF.

① 探究:点F到直线CD的距离是否发生变化?并说明理由;
② 设DG=x,△FCG的面积为S,是否存在x的值,使得S=1,若存在,求出x的值;若不存在,请说明理由.
试卷分析
  • 【1】题量占比

    选择题:(1道)

    单选题:(4道)

    填空题:(1道)

    解答题:(7道)

  • 【2】:难度分析

    1星难题:0

    2星难题:0

    3星难题:0

    4星难题:1

    5星难题:0

    6星难题:3

    7星难题:0

    8星难题:0

    9星难题:8