1.单选题- (共8题)
1.
我们知道:四边形具有不稳定性.如图,在平面直角坐标系中,边长为2的正方形ABCD的边AB在x轴上,AB的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点D′处,则点C的对应点C′的坐标为( )


A.(![]() | B.(2,1) | C.(1,![]() | D.(2,![]() |
2.
求证:菱形的两条对角线互相垂直.
已知:如图,四边形
是菱形,对角线
,
交于点
.
求证:
.
以下是排乱的证明过程:①又
,
②∴
,即
.
③∵四边形
是菱形,
④∴
.
证明步骤正确的顺序是( )

已知:如图,四边形




求证:

以下是排乱的证明过程:①又

②∴


③∵四边形

④∴

证明步骤正确的顺序是( )

A.③→②→①→④ | B.③→④→①→② | C.①→②→④→③ | D.①→④→③→② |
4.
如图,在给定的一张平行四边形纸片上作一个菱形.甲、乙两人的作法如下:
甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()

甲:连接AC,作AC的垂直平分线MN分别交AD,AC,BC于M,O,N,连接AN,CM,则四边形ANCM是菱形.
乙:分别作∠A,∠B的平分线AE,BF,分别交BC,AD于E,F,连接EF,则四边形ABEF是菱形.
根据两人的作法可判断()

A.甲正确,乙错误 | B.乙正确,甲错误 | C.甲、乙均正确 | D.甲、乙均错误 |
6.
如图,在正方形ABCD中,AC为对角线,E为AB上一点,过点E作EF∥AD,与AC、DC分别交于点G,F,H为CG的中点,连接DE,EH,DH,FH.下列结论:①EG=DF;②∠AEH+∠ADH=180°;③△EHF≌△DHC;④若
=
,则3S△EDH=13S△DHC,其中结论正确的有( )




A.1个 | B.2个 | C.3个 | D.4个 |
8.
下列命题:
①平行四边形的对边相等;
②对角线相等的四边形是矩形;
③正方形既是轴对称图形,又是中心对称图形;
④一条对角线平分一组对角的平行四边形是菱形.
其中真命题的个数是( )
①平行四边形的对边相等;
②对角线相等的四边形是矩形;
③正方形既是轴对称图形,又是中心对称图形;
④一条对角线平分一组对角的平行四边形是菱形.
其中真命题的个数是( )
A.1 | B.2 | C.3 | D.4 |
2.选择题- (共4题)
3.填空题- (共4题)
13.
如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:①OA=OD;②AD⊥EF;③当∠BAC=90°时,四边形AEDF是正方形;④AE2+DF2=AF2+DE2.其中正确的是_________.(填序号)

4.解答题- (共6题)
19.
如图,在矩形ABCD中,AB=8cm,BC=16cm,点P从点D出发向点A运动,运动到点A停止,同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.
(1)当t为何值时,四边形ABQP是矩形;
(2)当t为何值时,四边形AQCP是菱形;
(3)分别求出(2)中菱形AQCP的周长和面积.
(1)当t为何值时,四边形ABQP是矩形;
(2)当t为何值时,四边形AQCP是菱形;
(3)分别求出(2)中菱形AQCP的周长和面积.

21.
小明在数学活动课上,将边长为
和3的两个正方形放置在直线l上,如图a,他连接AD、CF,经测量发现AD=CF.
(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.


(1)他将正方形ODEF绕O点逆时针针旋转一定的角度,如图b,试判断AD与CF还相等吗?说明理由.
(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图c,请求出CF的长.


试卷分析
-
【1】题量占比
单选题:(8道)
选择题:(4道)
填空题:(4道)
解答题:(6道)
-
【2】:难度分析
1星难题:0
2星难题:0
3星难题:0
4星难题:0
5星难题:0
6星难题:3
7星难题:0
8星难题:0
9星难题:15