刷题首页
题库
高中数学
题干
已知双曲线
1(
a
>0,
b
>0)上一点
C
,过双曲线中心的直线交双曲线于
A
,
B
两点,记直线
AC
,
BC
的斜率分别为
k
1
,
k
2
,当
ln
|
k
1
|+
ln
|
k
2
|最小时,双曲线离心率为( )
A.
B.
C.
1
D.2
上一题
下一题
0.99难度 单选题 更新时间:2020-03-21 07:37:57
答案(点此获取答案解析)
同类题1
已知函数
.
(Ⅰ)求函数
的最大值;
(Ⅱ)已知
,求证
.
同类题2
已知函数
.
(1)讨论函数
的单调性;
(2)定义:“对于在区域
上有定义的函数
和
,若满足
恒成立,则称曲线
为曲线
在区域
上的紧邻曲线”.试问曲线
与曲线
是否存在相同的紧邻直线,若存在,请求出实数
的值;若不存在,请说明理由.
同类题3
在平面直角坐标系
中,已知定点
,点
在
轴上运动,点
在
轴上运动,点
为坐标平面内的动点,且满足
,
.
(1)求动点
的轨迹
的方程;
(2)过曲线
第一象限上一点
(其中
)作切线交直线
于点
,连结
并延长交直线
于点
,求当
面积取最大值时切点
的横坐标.
同类题4
函数
在闭区间
上的最大值为__________.
同类题5
如下图扇形
是一个观光区的平面示意图,其中
为
,半径
为
,为了便于游客观光休闲,拟在观光区内铺设一条从入口
到出口
的观光道路,道路由圆弧
、线段
及线段
组成.其中
在线段
上,且
,设
.
(1)用
表示
的长度,并写出
的取值范围;
(2)当
为何值时,观光道路最长?
相关知识点
函数与导数
导数及其应用
导数在研究函数中的作用
利用导数研究函数的最值
由导数求函数的最值
双曲线中的定值问题