刷题首页
题库
高中数学
题干
如图,已知椭圆
的长轴长为4,离心率为
,过点
的直线
l
交椭圆于
两点,与
x
轴交于P点,点
关于
轴的对称点为
,直线
交
轴于
点.
(1)求椭圆方程;
(2)求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-01-20 10:11:18
答案(点此获取答案解析)
同类题1
已知椭圆
的左焦点为
,过点
作倾斜角为
的直线与圆
相交的弦长为
,则椭圆的标准方程为( )
A.
B.
C.
D.
同类题2
已知椭圆中心在坐标原点O,焦点在
轴上,长轴长是短轴长的2倍,且经过点M(2,1),直线
平行OM,且与椭圆交于A、B两个不同的点.
(Ⅰ)求椭圆方程;
(Ⅱ)若
AOB为钝角,求直线
在
轴上的截距
的取值范围;
(Ⅲ)求证直线MA、MB与
轴围成的三角形总是等腰三角形.
同类题3
已知椭圆
:
的离心率为
,右顶点
是抛物线
的焦点.
(Ⅰ)求椭圆的方程;
(Ⅱ)是否存在过点
的直线
与椭圆交于
,
两个不同的点,且使
成立(
为直线
外的一点)?若存在,求出
的方程;若不存在,说明理由.
同类题4
已知椭圆
过点
,其离心率
.
(1)求椭圆
的方程;
(2)若直线
不经过点
,且与椭圆
相交于
两点(
、
不重合),若直线
与直线
的斜率之积为
.
(ⅰ)证明:
过定点,并求出定点坐标;
(ⅱ)求
的面积的最大值.
同类题5
已知椭圆
C
的两个顶点分别为
A
(−2,0),B(2,0),焦点在
x
轴上,离心率为
.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)点
D
为
x
轴上一点,过
D
作
x
轴的垂线交椭圆
C
于不同的两点
M
,
N
,过
D
作
AM
的垂线交
BN
于点
E
.求证:△
BDE
与△
BDN
的面积之比为4:5.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题