刷题首页
题库
高中数学
题干
将正整数12分解成两个正整数的乘积有
,
,
三种,其中
是这三种分解中,两数差的绝对值最小的,我们称
为12的最佳分解.当
是正整数
的最佳分解时,我们规定函数
,例如
.关于函数
有下列叙述:①
,②
,③
,④
.其中正确的序号为
(填入所有正确的序号).
上一题
下一题
0.99难度 填空题 更新时间:2019-11-27 02:53:07
答案(点此获取答案解析)
同类题1
在实数中:要证明实数
,
相等,可以利用
且
来证明.类比到集合中:要证明集合
,
相等,可以利用
________
来证明.
同类题2
若对任意
有唯一确定的
与之对应,则称
为关于
的二元函数.定义:同时满足下列性质的二元函数
为关于实数
的广义“距离”:
(Ⅰ)非负性:
;
(Ⅱ)对称性:
;
(Ⅲ)三角形不等式:
对任意的实数
均成立.
给出下列二元函数:
①
;②
;③
;④.
则其中能够成为关于
的广义“距离”的函数编号是______.(写出所有真命题的序号)
同类题3
魏晋时期数学家刘徽首创割圆术,他在《九章算术》方田章圆田术中指出:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”这是一种无限与有限的转化过程,比如在正数
中的“…”代表无限次重复,设
,则可以利用方程
求得x,类似地可得到正数
A.2
B.3
C.4
D.6
同类题4
在实数集
中,我们定义的大小关系“
”为全体实数排了一个“序”,类似的,我们这平面向量集合
上也可以定义一个称为“序”的关系,记为“
”.定义如下:对于任意两个向量
,
,
当且仅当“
”或“
且
”,按上述定义的关系“
”,给出下列四个命题:
①若
,
,
,则
;
②若
,
,则
;
③若
,则对于任意的
,
;
④对于任意的向量
,其中
,若
,则
.
其中正确的命题的个数为( )
A.4
B.3
C.2
D.1
同类题5
运用祖暅原理计算球的体积时,构造一个底面半径和高都与球半径相等的圆柱,与半球(如图一)放置在同一平面上,然后在圆柱内挖去一个以圆柱下底面圆心为顶点,圆柱上底面为底面的圆锥(如图二),用任何一个平行与底面的平面去截它们时,可证得所截得的两个截面面积相等,由此证明该几何体与半球体积相等.现将椭圆
绕
轴旋转一周后得一橄榄状的几何体(如图三),类比上述方法,运用祖暅原理可求得其体积等于( )
A.
B.
C.
D.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
其他类比