刷题首页
题库
高中数学
题干
已知
的三边长分别为
,其面积为
,则
的内切圆
的半径
.这是一道平面几何题,其证明方法采用“等面积法”.由平面类比到空间,设空间四面体
的各表面面积分别为
,其体积为
,四面体
的内切球半径为
r
,试猜测对空间四面体
存在什么类似结论?并加以证明.
上一题
下一题
0.99难度 解答题 更新时间:2018-06-26 10:39:34
答案(点此获取答案解析)
同类题1
若等差数列
的首项为
公差为
,前
项的和为
,则数列
为等差数列,且通项为
.类似地,请完成下列命题:若各项均为正数的等比数列
的首项为
,公比为
,前
项的积为
,则_____.
同类题2
下列类比推理中,得到的结论正确的是( )
A.把长方体与长方形类比,则有长方体的对角线平方等于长、宽、高的平方和
B.把
与
类比,则有
C.向量
的数量积运算与实数
的运算性质
类比,则有
D.把
与
类比,则有
同类题3
设
是由
个有序实数构成的一个数组,记作
,其中
称为数组
的“元”,
称为
的下标,如果数组
中的每个“元”都是来自数组
中不同下标的“元”,则称
为
的子数组,定义两个数组
和
的关系数为
;
(1)若
,
,设
是
的含有两个“元”的子数组,求
的最大值;
(2)若
,
,且
,
为
的含有三个“元”
的子数组,求
的最大值;
(3)若数组
中的“元”满足
,设数组
含有
四个“元”
,且
,求
与
的所有含有三个“元”
的子数组的关系数的最大值;
同类题4
若数列
是等差数列,则有数列
也为等差数列,类比上述性质,相应地:若数列
是等比数列,且
,则有
__________
也是等比数列.
同类题5
牛顿通过研究发现,形如
形式的可以展开成关于
的多项式,即
的形式其中各项的系数可以采用“逐次求导赋值法”计算.例如:在原式中令
可以求得
,第一次求导数之后再取
,可求得
,再次求导之后取
可求得
,依次下去可以求得任意-项的系数,设
...,则当
时,
__.(用分数表示)
相关知识点
推理与证明
合情推理与演绎推理
类比推理