刷题首页
题库
高中数学
题干
不难证明:一个边长为
,面积为
的正三角形的内切圆半径
,由此类比到空间,若一个正四面体的一个面的面积为
,体积为
,则其内切球的半径为_____________.
上一题
下一题
0.99难度 填空题 更新时间:2018-11-15 11:33:41
答案(点此获取答案解析)
同类题1
通过类比长方形,由命题“周长为定值
l
的长方形中,正方形的面积最大,最大值为
”,可猜想关于长方体的相应命题为____
同类题2
命题:在三角形中,顶点与对边中点连线所得三线段交于一点,且分线段长度比为
,类比可得在四面体中,顶点与所对面重心的连线所得四线段交于一点,且分线段比为( )
A.
B.
C.
D.
同类题3
如图,类比直线方程的截距式和点到直线的距离公式,则点
到平面
的距离是_____.
同类题4
在平面几何里有射影定理:设三角形ABC的两边AB⊥AC,D是A点在BC上的射影,则AB
2
=BD•BC.拓展到空间,在四面体A-BCD中,AD⊥面ABC,点O是A在面BCD内的射影,且O在△BCD内,类比平面三角形射影定理,得出正确的结论是( )
A.
B.
C.
C.
同类题5
已知
中,
于
,三边分别是
,则有
;类比上述结论,写出下列条件下的结论:四面体
中,
、
、
、
的面积分别是
,二面角
、
、
的度数分别是
,则
__________.
相关知识点
推理与证明
合情推理与演绎推理
类比推理
平面与空间中的类比