刷题首页
题库
高中数学
题干
已知四个命题:
①在回归分析中,
可以用来刻画回归效果,
的值越大,模型的拟合效果越好;
②在独立性检验中,随机变量
的值越大,说明两个分类变量有关系的可能性越大;
③在回归方程
中,当解释变量
每增加1个单位时,预报变量
平均增加1个单位;
④两个随机变量相关性越弱,则相关系数的绝对值越接近于1;
其中真命题是:
A.①④
B.②④
C.①②
D.②③
上一题
下一题
0.99难度 单选题 更新时间:2017-08-19 10:40:23
答案(点此获取答案解析)
同类题1
在某次测试后,一位老师从本班48同学中随机抽取6位同学,他们的语文、历史成绩如下表:
学生编号
1
2
3
4
5
6
语文成绩
60
70
74
90
94
110
历史成绩
58
63
75
79
81
88
(1)若规定语文成绩不低于90分为优秀,历史成绩不低于80分为优秀,以频率作概率,分别估计该班语文、历史成绩优秀的人数;
(2)用上表数据画出散点图易发现历史成绩
与语文成绩
具有较强的线性相关关系,求
与
的线性回归方程(系数精确到0.1).
参考公式:回归直线方程是
,其中
,
同类题2
某种商品价格与该商品日需求量之间的几组对照数据如下表:
(1)求
关于
的线性回归方程;
(2)利用(1)中的回归方程,当价格
元/
时,日需求量
的预测值为多少?
参考公式:线性回归方程
,其中
同类题3
中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为
,求
,并估计
的预报值;
(Ⅱ)现准备勘探新井
,若通过1、3、5、7号井计算出的
的值(
精确到0.01)相比于(Ⅰ)中
的值之差不超过10%,则使用位置最接近的已有旧井
,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:
)
(Ⅲ)设出油量与勘探深度的比值
不低于20的勘探并称为优质井,那么在原有6口井中任意勘探4口井,求勘探优质井数
的分布列与数学期望.
同类题4
为了解春季昼夜温差大小与某种子发芽多少之间的关系,现在从4月份的30天中随机挑选了5天进行研究,且分别记录了每天昼夜温差与每天每100颗种子浸泡后的发芽数,得到如下表格:
日期
4月1日
4月7日
4月15日
4月21日
4月30日
温差
x
/℃
10
11
13
12
8
发芽数
y
/颗
23
25
30
26
16
(1)从这5天中任选2天,记发芽的种子数分别为
m
,
n
,求事件“
m
,
n
均不小于25”的概率;
(2)从这5天中任选2天,若选取的是4月1日与4月30日的两组数据,请根据这5天中的另三天的数据,求出
y
关于
x
的线性回归方程
=
x
+
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
参考数据
同类题5
中央电视台为了解一档诗歌节目的收视情况,抽查东西两部各
个城市,得到观看该节目的人数(单位:千人)如茎叶图所示:其中一个数字被污损.
(1)求东部各城市观看该节目观众平均人数超过西部各城市观看该节目观众平均人数的概率;
(2)现从观看该节目的观众中随机统计了
位观众的周均学习诗歌知识的时间
(单位:小时)与年龄
(单位:岁),并制作了对照表(如表所示):由表中数据,求线性回归方程
,并预测年龄在
岁的观众周均学习诗歌知识的时间.
年龄
(岁)
周均学习成语知识时间
(小时)
(参考数据:
,回归直线方程参考公式:
)
相关知识点
计数原理与概率统计
统计案例
回归分析
线性回归