刷题首页
题库
高中数学
题干
已知
与
具有相关关系,且利用
关于
的回归直线方程进行预测,
时
,且
时
,求
关于
的回归直线方程中的回归系数.
上一题
下一题
0.99难度 解答题 更新时间:2019-02-18 11:18:30
答案(点此获取答案解析)
同类题1
某农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了
月
日至
月
日的每天昼夜温差与实验室每天每
颗种子中的发芽数,得到如下资料:
日期
月
日
月
日
月
日
月
日
月
日
温差
发芽数
(颗)
该农科所确定的研究方案是:先从这五组数据中选取
组,用剩下的
组数据求线性回归方程,再对被选取的
组数据进行检验.
(1)求选取的
组数据恰好是不相邻
天数据的概率;
(2)若选取的是
月
日与
月
日的两组数据,请根据
月
日至
月
日的数据,求出
关于
的线性回归方程
;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过
颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
同类题2
某县经济最近十年稳定发展,经济总量逐年上升,下表是给出的部分统计数据:
序号
2
3
4
5
年份
2008
2010
2012
2014
2016
经济总量
(亿元)
236
246
257
275
286
(1)如上表所示,记序号为
,请直接写出
与
的关系式;
(2)利用所给数据求经济总量
与年份
之间的回归直线方程
;
(3)利用(2)中所求出的直线方程预测该县2018年的经济总量.
附:对于一组数据
,
其回归直线
的斜率和截距的最小二乘估计分别为:
,
.
同类题3
随着人们生活水平的不断提高,家庭理财越来越引起人们的重视.某一调查机构随机调查了5个家庭的月收入与月理财支出(单位:元)的情况,如下表所示:
月收入
(千元)
8
10
9
7
11
月理财支出
(千元)
(I)在下面的坐标系中画出这5组数据的散点图;
(II)根据上表提供的数据,用最小二乘法求出
关于
的线性回归方程
;
(III)根据(II)的结果,预测当一个家庭的月收入为
元时,月理财支出大约是多少元?
(附:回归直线方程
中,
,
.)
同类题4
调查某公司的五名推销员,其工作年限与年推销金额如下表:
推销员
A
B
C
D
E
工作年限
x
(年)
2
3
5
7
8
年推销金额
y
(万元)
3
3.5
4
6.5
8
(1)在图中画出年推销金额关于工作年限的散点图,并从散点图中发现工作年限与年推销金额之间关系的一般规律;
(2)利用最小二乘法求年推销金额关于工作年限的回归直线方程;
(3)利用(2)中的回归方程,预测工作年限为10年的推销员的年推销金额.
同类题5
物价监督部门为调研某公司新开发上市的一种产品销售价格的合理性,对某公司的该产品的销量与价格进行了统计分析,得到如下数据和散点图:
定价x(元/kg)
10
20
30
40
50
60
年销量y(kg)
1150
643
424
262
165
86
z=21ny
14.1
12.9
12.1
11.1
10.2
8.9
(参考数据:
,
,
,
)
(Ⅰ)根据散点图判断,y与x和z与x哪一对具有的线性相关性较强(给出判断即可,不必说明理由)?
(Ⅱ)根据(Ⅰ)的判断结果及数据,建立y关于x的回归方程(方程中的系数均保留两位有效数字).
附:对于一组数据(x
1
,y
1
),(x
2
,y
2
),(x
3
,y
3
),…,(x
n
,y
n
),其回归直线
的斜率和截距的最小二乘估计分别为
,
.
相关知识点
计数原理与概率统计
统计
变量间的相关关系
最小二乘法
求回归直线方程
线性回归