刷题首页
题库
高中数学
题干
某小学五年级一次考试中,五名同学的语文、英语成绩如表所示:
(1)请在下图的直角坐标系中作出这些数据的散点图,并求出这些数据的回归方程;
(2)要从4名语文成绩在90分以上的同学中选2人参加一项活动,以
表示选中的同学的英语成绩高于90分的人数,求随机变量
不小于1的概率.
附:回归直线的斜率和截距的最小二乘法估计公式分别为:
,
.
上一题
下一题
0.99难度 解答题 更新时间:2017-06-16 04:21:28
答案(点此获取答案解析)
同类题1
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如表:
零件的个数x(个)
2
3
4
5
加工的时间y(小时)
2.5
3
4
4.5
参考公式:
,
,残差
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出
关于
的线性回归方程
;
(3)求第二个点的残差值,并预测加工10个零件需要多少小时?
同类题2
假设关于某设备的使用年限
(年)和所支出的年平均维修费用
(万元)(即维修费用之和除以使用年限),有如下的统计资料:
使用年限
2
3
4
5
6
维修费用
2.2
3.8
5.5
6.5
7.0
(1)画出散点图;
(2)求
关于
的线性回归方程;
(3)估计使用年限为10年时所支出的年平均维修费用是多少?
参考公式:
同类题3
下表显示出样本中变量
y
随变量
x
变化的一组数据,由此判断它最可能是( )
x
4
5
6
7
8
9
10
y
14
18
19
20
23
25
28
A.线性函数模型
B.二次函数模型
C.指数函数模型
D.对数函数模型
同类题4
某公司为了准确地把握市场,做好产品生产计划,对过去四年的数据进行整理得到了第
年与年销量
(单位:万件)之间的关系如表:
(Ⅰ)在图中画出表中数据的散点图;
(Ⅱ)根据(Ⅰ)中的散点图拟合
与
的回归模型,并用相关系数甲乙说明;
(Ⅲ)建立
关于
的回归方程,预测第5年的销售量约为多少?.
附注:参考数据:
,
,
.
参考公式:相关系数
,
回归方程
中斜率和截距的最小二乘法估计公式分别为:
,
.
同类题5
某种产品的广告费支出
与销售额
(单位:万元)之间有如下对应数据:
2
3
5
6
30
40
50
60
(1)画出散点图;
(2)求线性回归方程;
(3)试预测广告费支出为9万元时,销售额多大?
相关知识点
计数原理与概率统计
统计
变量间的相关关系
散点图
回归直线方程