刷题首页
题库
高中数学
题干
已知抛物线
的焦点为
,点
,过点
且斜率为
的直线与
交于
,
两点,若
,则
()
A.
B.
C.
D.
上一题
下一题
0.99难度 单选题 更新时间:2016-07-01 06:15:32
答案(点此获取答案解析)
同类题1
已知抛物线
的顶点在坐标原点,焦点为圆
的圆心.
(1)求抛物线
的标准方程和准线方程;
(2)若直线
为抛物线
的切线,证明:圆心
到直线
的距离恒大于
.
同类题2
设
为坐标原点,抛物线
:
的准线为
,焦点为
,过
且斜率为
的直线与抛物线
交于
两点,且
,若直线
与
相交与
,则
.
同类题3
已知抛物线
(
),点
在
的焦点
的右侧,且
到
的准线的距离是
到
距离的3倍,经过点
的直线与抛物线
交于不同的
、
两点,直线
与直线
交于点
,经过点
且与直线
垂直的直线
交
轴于点
.
(1)求抛物线
的方程和
的坐标;
(2)判断直线
与直线
的位置关系,并说明理由;
(3)椭圆
的两焦点为
、
,在椭圆
外的抛物线
上取一点
,若
、
的斜率分别为
、
,求
的取值范围.
同类题4
(1)设椭圆
与双曲线
有相同的焦点
、
,
是椭圆
与双曲线
的公共点,且△
的周长为6,求椭圆
的方程;我们把具有公共焦点、公共对称轴的两段圆锥曲线弧合成的封闭曲线称为“盾圆”;
(2)如图,已知“盾圆
”的方程为
,设“盾圆
”上的任意一点
到
的距离为
,
到直线
的距离为
,求证:
为定值;
(3)由抛物线弧
(
)与第(1)小题椭圆弧
(
)所合成的封闭曲线为“盾圆
”,设过点
的直线与“盾圆
”交于
、
两点,
,
,且
(
),试用
表示
,并求
的取值范围.
相关知识点
平面解析几何
圆锥曲线
抛物线
抛物线标准方程的形式
根据抛物线方程求焦点或准线
求直线与抛物线的交点坐标