刷题首页
题库
高中数学
题干
已知椭圆
经过点
,离心率为
,左右焦点分别为
,
.
(1)求椭圆
的方程;
(2)
是
上异于
的两点,若直线
与直线
的斜率之积为
,证明:
两点的横坐标之和为常数.
上一题
下一题
0.99难度 解答题 更新时间:2019-03-27 01:40:09
答案(点此获取答案解析)
同类题1
已知
是椭圆
的两个焦点,
是椭圆
上一点,当
时,有
.
(1)求椭圆
的标准方程;
(2)设过椭圆右焦点
的动直线
与椭圆交于
两点,试问在
铀上是否存在与
不重合的定点
,使得
恒成立?若存在,求出定点
的坐标,若不存在,请说明理由.
同类题2
已知椭圆
满足:过椭圆C的右焦点
且经过短轴端点的直线的倾斜角为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为坐标原点,若点
在直线
上,点
在椭圆C上,且
,求线段
长度的最小值.
同类题3
已知椭圆
的右焦点为
,离心率为
。
(1)求椭圆
的标准方程;
(2)
是椭圆
上不同的三点,若直线
的斜率之积为
,试问从
两点的横坐标之和是否为定值?若是,求出这个定值;若不是,请说明理由。
同类题4
已知椭圆
离心率
,过左焦点
且垂直于
轴的直线交椭圆于点
,且
.
(1)求椭圆的方程;
(2)点
在椭圆上,求
的最大值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题