刷题首页
题库
高中数学
题干
设椭圆
,圆
为
.
(1)若椭圆
的长轴为4,且焦距与椭圆
的焦距相等,求椭圆
的标准方程;
(2)过圆
上任意一点
作其切线
,若
与椭圆
交于
两点,求证:
为定值(
为坐标原点);
(3)在(2)的条件下,求
面积的取值范围.
上一题
下一题
0.99难度 解答题 更新时间:2019-04-07 07:13:27
答案(点此获取答案解析)
同类题1
已知椭圆
:
的长轴长是离心率的两倍,直线
:
交
于
,
两点,且
的中点横坐标为
.
(1)求椭圆
C
的方程;
(2)若
,
是椭圆
上的点,
为坐标原点,且满足
,求证:
,
斜率的平方之积是定值.
同类题2
已知椭圆
的左、右焦点分别为
,若椭圆经过点
,且
的面积为
.
(1)求椭圆
的标准方程;
(2)设斜率为
的直线
与以原点为圆心,半径为
的圆交于
两点,与椭圆
交于
两点,且
,当
取得最小值时,求直线
的方程并求此时
的值.
同类题3
在平面直角坐标系
中已知椭圆
过点
,其左、右焦点分别为
,离心率为
.
(1)求椭圆
E
的方程;
(2)若
A
,
B
分别为椭圆
E
的左、右顶点,动点
M
满足
,且
MA
交椭圆
E
于点
P
.
(i)求证:
为定值;
(ii)设
PB
与以
PM
为直径的圆的另一交点为
Q
,问:直线
MQ
是否过定点,并说明理由.
同类题4
椭圆的中心在原点,焦点在
上,焦距为
,且经过点
.
(1)求满足条件的椭圆方程;
(2)求椭圆的长轴长和焦点坐标.
同类题5
已知椭圆
:
,
,
分别是椭圆短轴的上下两个端点,
是椭圆的左焦点,
P
是椭圆上异于点
,
的点,若
的边长为4的等边三角形.
写出椭圆的标准方程;
当直线
的一个方向向量是
时,求以
为直径的圆的标准方程;
设点
R
满足:
,
,求证:
与
的面积之比为定值.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中的定值问题