刷题首页
题库
高中数学
题干
设椭圆M:
的离心率与双曲线
的离心率互为倒数,且内切于圆
.
(1)求椭圆M的方程;
(2)已知
,
是椭圆M的下焦点,在椭圆M上是否存在点P,使
的周长最大?若存在,请求出
周长的最大值,并求此时
的面积;若不存在,请说明理由.
上一题
下一题
0.99难度 解答题 更新时间:2018-12-24 09:11:14
答案(点此获取答案解析)
同类题1
若复数
满足
,则
在复平面内对应点的轨迹方程是__________(结果要求化简)
同类题2
如图,圆
,
是圆
M
内一个定点,
P
是圆上任意一点,线段
PN
的垂直平分线
l
和半径
MP
相交于点
Q
,当点
P
在圆
M
上运动时,点
Q
的轨迹为曲线
E
.
(1)求曲线
E
的方程;
(2)已知抛物线
上,是否存在直线
m
与曲线
E
交于
G
,
H
,使得
G
,
H
中点
F
落在直线
y
=2
x
上,并且与抛物线相切,若直线
m
存在,求出直线
m
的方程,若不存在,说明理由.
同类题3
已知
,
分别是椭圆
:
的左,右焦点,点
在椭圆
上,且抛物线
的焦点是椭圆
的一个焦点.
(1)求
,
的值:
(2)过点
作不与
轴重合的直线
,设
与圆
相交于
A
,
B
两点,且与椭圆
相交于
C
,
D
两点,当
时,求△
的面积.
同类题4
已知点
,点
,点
,动圆
与
轴相切于点
,过点
的直线
与圆
相切于点
,过点
的直线
与圆
相切于点
(
均不同于点
),且
与
交于点
,设点
的轨迹为曲线
.
(1)证明:
为定值,并求
的方程;
(2)设直线
与
的另一个交点为
,直线
与
交于
两点,当
三点共线时,求四边形
的面积.
同类题5
设
, 若向量
,
,且
,
(1)求点
的轨迹C的方程;
(2)过点
作直线
与曲线C交于
两点,设
,是否存在这样的直线
,使得四边形
是矩形?若存在,求出直线
的方程;若不存在,说明理由.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的定义
利用椭圆定义求方程
求直线与椭圆的交点坐标