刷题首页
题库
高中数学
题干
已知椭圆
右焦点
,离心率为
,过
作两条互相垂直的弦
,设
中点分别为
.
(1)求椭圆的方程;
(2) 证明:直线
必过定点,并求出此定点坐标;
(3) 若弦
的斜率均存在,求
面积的最大值.
上一题
下一题
0.99难度 解答题 更新时间:2018-05-10 07:28:05
答案(点此获取答案解析)
同类题1
已知椭圆
的左、右焦点分别是
,直线
与椭圆相交于
两个不同点,
是坐标原点
(1)当
时,若
的面积是10,求实数
的值
(2)当
时,求
的面积
的最大值
同类题2
在平面直角坐标系xOy中,椭圆C:
(a>b>0)的上顶点到焦点的距离为2,离心率为
.
(1)求a,b的值.
(2)设P是椭圆C长轴上的一个动点,过点P作斜率为k的直线l交椭圆C于A、B两点.
(ⅰ)若k=1,求△OAB面积的最大值;
(ⅱ)若PA
2
+PB
2
的值与点P的位置无关,求k的值.
同类题3
设椭圆
的离心率
,左顶点
到直线
的距离
,
为坐标原点.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设直线
与椭圆
相交于
两点,若以
为直径的圆经过坐标原点,证明:点
到直线
的距离为定值;
(III)在(Ⅱ)的条件下,试求
的面积
的最小值.
同类题4
已知
是圆
上的一个动点,过点
作两条直线
,它们与椭圆
都只有一个公共点,且分别交圆于点
.
(Ⅰ)若
,求直线
的方程;
(Ⅱ)①求证:对于圆上的任意点
,都有
成立;
②求
面积的取值范围.
同类题5
已知点
,圆
,点
是圆上一动点,
的垂直平分线与
交于点
.
(1)求点
的轨迹方程;
(2)设点
的轨迹为曲线
,过点
且斜率不为0的直线
与
交于
两点,点
关于
轴的对称点为
,证明直线
过定点,并求
面积的最大值.
相关知识点
平面解析几何
圆锥曲线
直线与圆锥曲线的位置关系
椭圆中的直线过定点问题