刷题宝
  • 刷题首页
题库 高中数学

题干

已知椭圆:,直线不过原点且不平行于坐标轴,与有两个交点,,线段的中点为 
(1)证明:直线的斜率与的斜率的乘积为定值;
(2)若过点,延长线段与交于点,四边形能否为平行四边形?若能,求此时的斜率;若不能,说明理由.
上一题 下一题 0.99难度 解答题 更新时间:2020-01-30 04:46:02

答案(点此获取答案解析)

同类题1

已知椭圆:,该椭圆经过点,且离心率为.
(1)求椭圆的标准方程;
(2)设是圆上任意一点,由引椭圆的两条切线,,当两条切线的斜率都存在时,证明:两条切线斜率的积为定值.

同类题2

如果点既在平面区域上,且又在曲线上,则的最小值为(   )
A.B.1C.D.

同类题3

已知两点、,动点在轴上的射影是,且.
(1)求动点的轨迹方程;
(2)设直线、的两个斜率存在,分别记为、,若,求点的坐标;
(3)若经过点的直线与动点的轨迹有两个交点、,当时,求直线的方程.

同类题4

设椭圆的离心率为,椭圆上一点到左右两个焦点的距离之和是4.
(1)求椭圆的方程;
(2)已知过的直线与椭圆交于两点,且两点与左右顶点不重合,若,求四边形面积的最大值.
相关知识点
  • 平面解析几何
  • 圆锥曲线
  • 直线与圆锥曲线的位置关系
  • 直线与椭圆的位置关系
  • 根据直线与椭圆的位置关系求参数或范围
  • 椭圆中的定值问题
刷题宝 没有分数是刷题提高不了的! 粤ICP备12066032号

本站仅为免费收集试题提供给学生刷题,不做任何盈利性活动!如无意侵犯您的合法权益,联系站长删除处理(QQ:2572127418)