刷题首页
题库
高中数学
题干
已知椭圆
的离心率为
,且过点
.
(1)求椭圆
的方程;
(2)过椭圆
左焦点的直线
与椭圆
交于
两点,直线
过坐标原点且直线
与
的斜率互为相反数,直线
与椭圆交于
两点且均不与点
重合,设直线
的斜率为
,直线
的斜率为
.证明:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2018-04-01 07:51:53
答案(点此获取答案解析)
同类题1
如图,椭圆E:
的离心率是
,过点P(0,1)的动直线
与椭圆相交于A,B两点,当直线
平行与
轴时,直线
被椭圆E截得的线段长为
.
(1)求椭圆E的方程;
(2)在平面直角坐标系
中,是否存在与点P不同的定点Q,使得
恒成立?若存在,求出点Q的坐标;若不存在,请说明理由.
同类题2
已知椭圆
E
:
+
=1(
a
>0,
b
>0)的离心率为
,
F
1
,
F
2
分别为左
.
右焦点,
A
,
B
分别为左
.
右顶点,
D
为上顶点,原点
O
到直线
BD
的距离为
.设点
P
在第一象限,且
PB
⊥
x
轴,连接
PA
交椭圆于点
C
,记点
P
的纵坐标为
t
.
(1) 求椭圆
E
的方程;
(2) 若△
ABC
的面积等于四边形
OBPC
的面积,求直线
PA
的方程;
(3) 求过点
B
,
C
,
P
的圆的方程(结果用
t
表示).
同类题3
设椭圆C:
过点(0,4),离心率为
(Ⅰ)求C的方程;
(Ⅱ)求过点(3,0)且斜率为
的直线被C所截线段的中点坐标.
同类题4
已知椭圆
经过点
.离心率
.
(1)求椭圆
C
的标准方程;
(2)若
M
,
N
分别是椭圆长轴的左、右端点,动点
D
满足
,连接
MD
交椭圆于点
Q
.问:
x
轴上是否存在异于点
M
的定点
G
,使得以
QD
为直径的圆恒过直线
QN
,
GD
的交点?若存在,求出点
G
的坐标;若不存在,说明理由.
同类题5
已知椭圆
的左,右焦点分别为
,该椭圆的离心率为
,以原点为圆心,椭圆的短半轴长为半径的圆与直线
相切.
(I)求椭圆
的方程;
(Ⅱ)如图,若斜率为
的直线
与
轴,椭圆
顺次交于
点在椭圆左顶点的左侧)且
,求证:直线
过定点;并求出斜率
的取值范围.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的离心率
根据离心率求椭圆的标准方程
椭圆中的定值问题