刷题首页
题库
高中数学
题干
已知椭圆
的长轴长为4,且短轴的两个端点与右焦点是一个等边三角形的三个顶点,
为坐标原点.
(1)求椭圆
的方程;
(2)过椭圆的右焦点
作直线
,与椭圆相交于
,
两点,求
面积的最大值,并求此时直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-26 07:47:11
答案(点此获取答案解析)
同类题1
已知椭圆
过点
,且椭圆
的一个顶点
的坐标为
.过椭圆
的右焦点
的直线
与椭圆
交于不同的两点
,
(
,
不同于点
),直线
与直线
:
交于点
.连接
,过点
作
的垂线与直线
交于点
.
(1)求椭圆
的方程,并求点
的坐标;
(2)求证:
,
,
三点共线.
同类题2
已知椭圆
的两个焦点分别为
,离心率为
,过
的直线
与椭圆
交于
两点,且
的周长为
(1)求椭圆
的方程;
(2)若直线
与椭圆
分别交于
两点,且
,试问点
到直线
的距离是否为定值,证明你的结论.
同类题3
设椭圆
的左、右焦点分别为
,
,离心率为
,过点
的直线
交椭圆
于点
,
(不与左右顶点重合),连接
,已知
的周长为8.
(1)求椭圆
的方程;
(2)设
,若
,求直线
的方程.
同类题4
已知椭圆
的左右焦点分别为
和
,离心率
,连接椭圆的四个顶点所得四边形的面积为
.
(1)求椭圆C的标准方程;
(2)设A,B是直线
上的不同两点,若
,求
的最小值
同类题5
如图,在平面直角坐标系
中,椭圆
的焦距为
,且过点
.
(1)求椭圆
的方程;
(2)若点
分别是椭圆
的左右顶点,直线
经过点
且垂直于
轴,点
是椭圆上异于
的任意一点,直线
交
于点
.
①设直线
的斜率为
,直线
的斜率为
,求证:
为定值;
②设过点
垂直于
的直线为
,求证:直线
过定点,并求出定点的坐标.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积