刷题首页
题库
高中数学
题干
已知椭圆
的长轴长为4,且短轴的两个端点与右焦点是一个等边三角形的三个顶点,
为坐标原点.
(1)求椭圆
的方程;
(2)过椭圆的右焦点
作直线
,与椭圆相交于
,
两点,求
面积的最大值,并求此时直线
的方程.
上一题
下一题
0.99难度 解答题 更新时间:2019-12-26 07:47:11
答案(点此获取答案解析)
同类题1
如图,
分别是椭圆
的左、右焦点,焦距为
,动弦
平行于
轴,且
.
(1)求椭圆
的方程;
(2)过
分别作直线
交椭圆于
和
,且
,求四边形
面积的最大值.
同类题2
已知椭圆C:
的两个焦点分别为
,
,点P是椭圆上的任意一点,且
的最大值为4,椭圆C的离心率与双曲线
的离心率互为倒数.
Ⅰ
求椭圆C的方程;
Ⅱ
设点
,过点P作两条直线
,
与圆
相切且分别交椭圆于M,N,求证:直线MN的斜率为定值.
同类题3
已知椭圆
C
:
+
=1(
a
>
b
>0)的一个焦点是
F
(1,0),且离心率为
.
(Ⅰ)求椭圆
C
的方程;
(Ⅱ)设经过点
F
的直线交椭圆
C
于
M
,
N
两点,线段
MN
的垂直平分线交
y
轴于点
P
(0,
y
0
),求
y
0
的取值范围.
同类题4
已知椭圆
的离心率为
,点
椭圆的右顶点.
(1)求椭圆的方程;
(2)过点
的直线
与椭圆交于
两点,直线
与直线
的斜率和为
,求直线
的方程.
同类题5
已知椭圆
E
的方程为
1(
a
>
b
>0)双曲线
1的两条渐近线为
l
1
和
l
2
,过椭圆
E
的右焦点
F
作直线
l
,使得
l
⊥
l
2
于点
C
,又
l
与
l
1
交于点
P
,
l
与椭圆
E
的两个交点从上到下依次为
A
,
B
(如图).
(1)当直线
l
1
的倾斜角为30°,双曲线的焦距为8时,求椭圆的方程;
(2)设
,证明:λ
1
+λ
2
为常数.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
椭圆中三角形(四边形)的面积