刷题首页
题库
高中数学
题干
已知椭圆
,点
是
长轴上的一个动点,过点
的直线
与
交于
两点,与
轴交于点
,弦
的中点为
.当
为
的右焦点且
的倾斜角为
时,
,
重合,
.
(1)求椭圆
的方程;
(2)当
均与原点
不重合时,过点
且垂直于
的直线
与
轴交于点
.求证:
为定值.
上一题
下一题
0.99难度 解答题 更新时间:2019-05-13 01:09:43
答案(点此获取答案解析)
同类题1
已知椭圆
:
(
)的左焦点为
,长轴长为
。
(1)求椭圆
的标准方程;
(2)设
为坐标原点,
为直线
上一点,过
作
的垂线交椭圆于
,
。当四边形
是平行四边形时,求四边形
的面积。
同类题2
已知椭圆
C
的中心在原点,以坐标轴为对称轴,且经过两点
,
.
(1)求椭圆
C
的方程;
(2)设椭圆
C
在
A
、
B
两点的切线分别为
、
,
P
为椭圆
C
上任意一点,点
P
到直线
、
的距离分别为
、
,证明:存在直线
,使得点
P
到
的距离
d
(其中
)满足
恒为定值,并求出这一定值.
同类题3
已知椭圆
C
:
经过点
,且离心率为
.
(1)求椭圆
C
的方程;
(2)若一组斜率为2的平行线,当它们与椭圆
C
相交时,证明:这组平行线被椭圆
C
截得的线段的中点在同一条直线上.
同类题4
如图,在平面直角坐标系
xOy
中,已知椭圆
C
1
:
+
y
2
=1,椭圆
C
2
:
+
=1(
a
>
b
>0),
C
2
与
C
1
的长轴长之比为
∶1,离心率相同.
(1) 求椭圆
C
2
的标准方程;
(2) 设点
P
为椭圆
C
2
上的一点.
①射线
PO
与椭圆
C
1
依次交于点
A
,
B
,求证:
为定值;
②过点
P
作两条斜率分别为
k
1
,
k
2
的直线
l
1
,
l
2
,且直线
l
1
,
l
2
与椭圆
C
1
均有且只有一个公共点,求证
k
1
·
k
2
为定值.
同类题5
已知
,椭圆
:
(
)的离心率为
,
是椭圆
的右焦点,直线
的斜率为
,
为原点.
(I)求椭圆
的方程;
(Ⅱ)直线
经过点
,与椭圆交于
两点,若以
为直径的圆经过坐标原点
,求
.
相关知识点
平面解析几何
圆锥曲线
椭圆
椭圆的标准方程
根据a、b、c求椭圆标准方程
求直线与椭圆的交点坐标